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Abstract

The aim of this paper is to deal with a multiobjective linear programming problem with fuzzy random coefficients. Some
crisp equivalent models are presented and a traditional algorithm based on an interactive fuzzy satisfying method is proposed to
obtain the decision maker’s satisfying solution. In addition, the technique of fuzzy random simulation is adopted to handle general
fuzzy random objective functions and fuzzy random constraints which are usually hard to be converted into their crisp equivalents.
Furthermore, combined with the techniques of fuzzy random simulation, a genetic algorithm using the compromise approach is
designed for solving a fuzzy random multiobjective programming problem. Finally, illustrative examples are given in order to show
the application of the proposed models and algorithms.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Among types of uncertainty surrounding real life problems, randomness (stochastic variation) and fuzziness
(vagueness) play a pivotal role. Accordingly, stochastic programming and fuzzy programming have been proposed to
make decisions under an uncertainty environment. Different types of stochastic programming and fuzzy programming
models have been developed to suit the different purposes of management, such as the expectation model [1], chance
constrained programming [2,3], the minimum risk problem [4], the modality approach and the fractile approach [5]
etc. In these models, randomness and fuzziness are considered as separate aspects. However, in a decision-making
process, we may face a hybrid uncertain environment where fuzziness and randomness coexist. In such cases, the
concept of fuzzy random variable introduced by Kwakernaak [6] is a useful tool dealing with the two types of
uncertainty simultaneously.

Recently, several researchers have considered the issue of combining fuzziness and randomness in an optimization
framework such as Wang and Qiao [7,8], Luhandjula [9,10], Katagiri et al. [11], and Liu [3,12,1,4]. In [7,8], Wang and
Qiao discussed the distribution problems for linear programming with fuzzy random coefficients. In [9], Luhandjula

∗ Corresponding author.
E-mail addresses: xujiuping@openmba.com, xujiupingscu@126.com (J. Xu).

0895-7177/$ - see front matter c© 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.mcm.2006.03.013

http://www.elsevier.com/locate/mcm
mailto:xujiuping@openmba.com
mailto:xujiupingscu@126.com
http://dx.doi.org/10.1016/j.mcm.2006.03.013


1098 J. Li et al. / Mathematical and Computer Modelling 44 (2006) 1097–1113

employed a semi-infinite approach in order to convert the original fuzzy random linear programming problem into
a stochastic programming one so that the techniques of stochastic optimization can apply. In [10], Luhandjula
proposed a unifying methodological approach to transform the constraints with fuzzy random coefficients into crisp
constraints. In [11], Katagiri et al. proposed an interactive satisfying method to solve the fuzzy random multiobjective
0-1 programming problem. Besides, in [3,12] Liu presented fuzzy random chance-constrained programming, fuzzy
random dependent-chance programming, and designed some hybrid intelligent algorithms in order to solve them
effectively. In [1,4], Liu and Liu presented an expected value model and minimum risk problem for the fuzzy random
multiobjective programming problem and designed some hybrid intelligent algorithms.

The purpose of this paper is to present two approaches of solving multiobjective linear programming with fuzzy
random coefficients. Our research is based on the chance measure of fuzzy random events [3]. This paper is organized
as follows. Section 2 recalls some definitions and results about fuzzy random variables. Section 3 studies the prob-
pos constrained multiobjective programming model. A crisp equivalent model is proposed for a special type of fuzzy
random variables, and an interactive fuzzy satisfying method is adopted to obtain the decision maker’s satisfactory
solution. Section 4 considers the prob-nec constrained multiobjective programming model. Fuzzy random simulation
and fuzzy random simulation-based genetic algorithm using compromise approach are presented in Sections 5 and
6, respectively. Finally, illustrative examples are given in order to show the application of the proposed models and
algorithms. The results show that the fuzzy random simulation-based genetic algorithm is effective.

2. Fuzzy random variable

Fuzzy random variable, which was introduced by Kwakernaak [6] in 1978, is a concept to depict the phenomena
in which randomness and fuzziness appear simultaneously. Since then, its variants and extensions were presented by
other researchers, e.g., Colubi et al. [13], Kruse and Meyer [14], López-Diaz and Gil [15], Puri and Ralescu [16] and
Liu and Liu [17].

In this paper, the definition of fuzzy random variable and the results are cited from [17].
Let F be a collection of fuzzy variables defined on the possibility space.

Definition 1. Let (Ω ,A, Pr) be a probability space. A fuzzy random variable is a function ξ : Ω → F such that for
any Borel set B of R,

ξ∗(B)(w) = Pos{ξ(w) ∈ B}

is a measurable function of w.

Lemma 1. Let f : Rn
→ R be a continuous function and ξi be fuzzy random variables defined on (Ωi ,Ai , Pri ), i =

1, 2, . . . , n, respectively. Then f (ξ) = f (ξ1, ξ2, . . . , ξn) is a fuzzy random variable on the product probability space
(Ω1 × Ω2 × · · · × Ωn,A1 ×A2 × · · · ×An, Pr1 × Pr2 × · · · × Prn), defined by

f (ξ)(w1, w2, . . . , wn) = f (ξ1(w1), ξ2(w2), . . . , ξn(wn))

for all (w1, w2, . . . , wn) ∈ Ω1 × Ω2 × · · · × Ωn .

Lemma 2. Assume that ξ is a fuzzy random vector, i.e., with the n-tuple of fuzzy random variables (ξ1, ξ2, . . . , ξn),
and gr are real-valued continuous functions for r = 1, 2, . . . , p. Then

(i) the possibility Pos{gr (ξ(w)) ≤ 0, r = 1, 2, . . . , p} is a random variable;
(ii) the necessity Nec{gr (ξ(w)) ≤ 0, r = 1, 2, . . . , p} is a random variable.

Consider the following multiobjective programming problem with fuzzy random coefficients

max{ f1(x, ξ), f2(x, ξ), . . . , fm(x, ξ)}

s.t. gr (x, ξ) ≤ 0, r = 1, 2, . . . , p,
(2.1)

where x is a n-dimensional decision vector, ξ = (ξ1, ξ2, . . . , ξn) is a fuzzy random vector, fi (x, ξ) are objective
functions, i = 1, 2, . . . , m and gr (x, ξ) are constraint functions, r = 1, 2, . . . , p. Because of the existence of fuzzy
random vector ξ , problem (2.1) is not well-defined. That is, the meaning of maximizing fi (x, ξ), i = 1, 2, . . . , m is
not clear and the constraints gr (x, ξ) ≤ 0, r = 1, 2, . . . , p do not define a deterministic feasible set.
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