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Abstract

This paper provides an effective modification to the big-M method which leads to reducing the iterations of this method, when it is
used to recognize the infeasibility of linear systems.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The simplex algorithm was conceived by Dantzig for
solving linear programming (LP) problems (see [1–3,7]).
This method starts with a basic feasible solution (BFS)
and moves to an improved BFS, until the optimal point
is reached or else unboundedness of the objective function
is verified. In order to initialize this algorithm a BFS must
be available. In many cases, finding such a BFS is not
straightforward and some work may be needed to get the
simplex algorithm started. To this end, there are two tech-
niques in linear programming literature: two-phase method
and big-M method [1,2,6]. But there may be some LP mod-
els for which there are not any BFSs, i.e., the model is
infeasible. Both two-phase method and big-M method dis-
tinguish the infeasibility. In this paper, we focus on infeasi-
ble cases and deal with the behaviour of big-M approach
when dealing with infeasibility, and modify one of its
end-conditions to strongly reduce the iterations required
to distinguish the infeasibility.

The rest of this paper unfolds as follows: In Section 2,
the big-M technique is reviewed. Section 3 contains the

provided modification and in Section 4, to illustrate the
ability of the provided modification to reduce the number
of iterations, a class of LP models is surveyed. Finally, Sec-
tion 5 contains a short conclusion.

2. Big-M method

Consider a generic LP model. After manipulating the
constraints and introducing the required slack variables,
the constraints are put in the format Ax ¼ b;x P 0 where
A is an m� n matrix and b P 0 is an m� 1 vector.
Considering c as cost vector, the following LP model is
dealt with:

min cx ðPÞ
s:t: Ax ¼ b

x P 0:

Furthermore, suppose that we do not have a starting
BFS for simplex method, i.e., A has no identity submatrix.
In this case we shall resort to the artificial variables to get a
starting BFS, and then use the simplex method itself and
get rid of these artificial variables. The use of artificial vari-
ables to obtain a starting BFS was first provided by
Dantzig[2].
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To illustrate, suppose that we change the restrictions by
adding an artificial vector xa leading to the system
Axþ xa ¼ b; ðx; xaÞP 0. This forces an identity submatrix
corresponding to the artificial vector and gives an immedi-
ate BFS of the new system, namely ðx ¼ 0; xa ¼ bÞ. Even
though we now have a starting BFS and the simplex
method can be applied, we have in effect changed the prob-
lem. In order to get back to our original problem, we must
force these artificial variables to zero, because
Ax ¼ b() Axþ xa ¼ b; xa ¼ 0.

Therearevariousmethodsthatcanbeusedtoeliminate the
artificial variables. One of these methods is to assign a large
penalty coefficient to these variables in the original objective
function in such a way as to make their presence in the basis at
a positive level very unattractive from the objective function
point of view. More specifically, ðPÞ is changed to:

min cxþM1xa P ðMÞ
s:t: Axþ xa ¼ b

ðx; xaÞP 0;

where M is a very large positive number and 1 ¼
ð1; 1; . . . ; 1Þ. The term M1xa can be interpreted as a penalty
to be paid by any solution with xa 6¼ 0. Therefore the sim-
plex method itself will try to get the artificial variables out
of the basis, and then continue to find an optimal solution
of the original problem. This technique is named the big-M
method. Hereafter ‘‘*” indicates the optimality, zj � cj is
the reduced cost of the jth variable, and yj ¼ B�1aj, where
B is the basis of the simplex method associated with the re-
lated iteration and aj is the jth column of the technological
coefficients matrix (for P ðMÞ it is [A,I]).

Four possible cases may arise while solving P ðMÞ:

ðA1Þ : ðx�; x�aÞ is an optimal solution of P ðMÞ, in which
x�a ¼ 0.

ðA2Þ : ðx�; x�aÞ is an optimal solution of P ðMÞ, in which
x�a 6¼ 0.

ðB1Þ : zk � ck ¼ maxðzj � cjÞ > 0; yk 6 0; and all artificials
are equal to zero.

ðB2Þ : zk � ck ¼ maxðzj � cjÞ > 0; yk 6 0; and not all artifi-
cials are equal to zero.

In case ðA1Þ; x� is an optimal solution of ðP Þ and in case
ðB1Þ; ðP Þ has an unbounded optimal value. In this paper we
focus on the two other cases, i.e., ðA2Þ and ðB2Þ. The fol-
lowing theorem clarifies these cases. See pages 155–159 of
[1] for details.

Theorem 1. Cases ðA2Þ and ðB2Þ imply the infeasibility of

ðP Þ.

Considering the above theorem and studying conditions
ðA2Þ and ðB2Þ, show that the big-M method recognizes the
infeasibility of ðP Þ after completely solving PðMÞ and this
can be onerous from a computational point of view. In
the next section, we modify the condition of case ðB2Þ to
reduce this problem.

3. Modification of big-M method

In this section, we reduce the assumption of Theorem 1
and provide a reduced condition that leads to decreasing
the iterations of the big-M method. The following theorem
contains the modified condition.

Theorem 2. Suppose that while solving P(M), we have

zk � ck ¼ maxðzj � cjÞ > 0;
X
i2B1

yik 6 0 ð1Þ

where

B1 ¼ fijxi is a basic artificial variableg;
and not all artificials are equal to zero. Then ðPÞ is

infeasible.

Proof. Suppose that sets B1;B2; and N consist of the indi-
ces of basic artificial variables, basic original variables, and
nonbasic variables, respectively. B is the basis correspond-
ing to the simplex tableau satisfying (1), �b ¼ B�1b;
and c ¼ ðcB; cNÞ. By these considerations we get

zj � cj ¼ cByj � cj ¼
X
i2B2

ciyij þM
X
i2B1

yij

 !
� cj:

Since zk � ck ¼ maxðzj � cjÞ;
P

i2B1
yik 6 0;M is a very

large number, and regarding the above equation we getP
i2B1

yij 6 0 for all j 2 N .
Now by contradiction suppose that ðP Þ has a feasible

solution, then xi ¼ 0; for all i 2 B1. From the correspond-
ing tableau we have

xi þ
X
j2N

xjyij ¼ �bi for all i 2 B1:

Summing these equations gives

X
j2N

xj

X
i2B1

yij

 !
¼
X
i2B1

�bi:

The left-hand-side of this equation is 6 0 while the other
side is > 0. This contradiction shows that ðP Þ is infeasible
and completes the proof. h

Note that condition (1) in Theorem 2 is a reduced ver-
sion of that in case ðB2Þ in the previous section, i.e., it
may happen that in one of the iterations of the big-M
method, condition (1) holds while the condition of case
ðB2Þ does not hold.

Theorem 3. The condition provided in Theorem 2 is able to

distinguish the infeasibility of ðP Þ before the condition of case
ðB2Þ holds.

Proof. Clearly we have

zk � ck ¼ maxðzj � cjÞ > 0; yk 6 0) zk � ck

¼ maxðzj � cjÞ > 0;
X
i2B1

yik 6 0
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