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Shakedown analysis is a powerful tool for assessing the safety of structures under variable repeated loads.
By using the element free Galerkin (EFG) method and non-linear programming, a novel numerical solu-
tion procedure is developed to perform lower bound shakedown analysis of structures made up of elasto-
perfectly plastic material. The numerical implementation is very simple and convenient because it is only
necessary to construct an array of nodes in the domain under consideration. The reduced-basis technique
is adopted here to solve the mathematical programming iteratively in a sequence of reduced self-equilib-

?ﬁgﬁ’:ﬁf’;n analvsis rium stress subspaces with very low dimensions. The self-equilibrium stress field is expressed by linear
EFG method v combination of several self-equilibrium stress basis vectors with parameters to be determined. These

self-equilibrium stress basis vectors are generated by performing an equilibrium iteration procedure dur-
ing elasto-plastic incremental analysis. The Complex method is used to solve the non-linear program-
ming and determine the lower bound of shakedown load. The proposed numerical method is verified
by using several numerical examples and the results show good agreement with other available
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solutions.
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1. Introduction

The design of engineering structures subjected to variable re-
peated loads demands a realistic assessment of the safety margin
with respect to failure. A particular kind of failure in the case of
variable repeated loads is caused by an unlimited accumulation
of plastic strains during the loading process, leading to either incre-
mental collapse (characterized by unbounded deformation growth
for each cycle of loading) or alternating plasticity (eventually lead-
ing to fractures by a low cycle fatigue type phenomenon). If, on the
contrary, after some time plastic strains cease to develop further
and the structure responds purely elastically to the applied vari-
able loads, the structure is said to shake down. The shakedown
of a structure indicates that the damage stops evolving after a finite
number of loading cycles. This is due to the fact that a stationary
self-equilibrium stress field is formed and the total dissipated en-
ergy becomes stationary. Therefore, the prediction of shakedown
or collapse of structures under variable repeated loads is very
important and useful for structural design and safety assessment,
and has attracted the attention of many researchers [1-25].

Some designers hope to solve such problems by the elasto-plas-
tic incremental analysis. However, it necessitates greater calcula-
tion efforts and requires detailed loading histories, which often
are unavailable or uncertain in engineering situations. Shakedown

* Corresponding author. Tel.: +86 10 62773751; fax: +86 10 62781824.
E-mail address: yhliu@mail.tsinghua.edu.cn (Y. Liu).

0045-7825/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.cma.2008.03.009

analysis, a generalization of limit analysis, is a useful alternative
to step-by-step method, particularly when only the upper and low-
er limits of the loading histories are known. The primary merit of
shakedown analysis is that it enables the computation of the shake-
down load against failure without resorting to the time-stepping
evolutive solutions. But on the other hand, shakedown analysis is
faced with great difficulty in numerical computation. With solution
procedures, it is mostly centered on mathematical programming
[3,4]. This mathematical programming has excessive independent
variables and constraint conditions after discretization, in general
is a large scale non-linear programming, and hence is usually very
difficult to be solved (i.e. the obstacle of high dimension). At present
many scholars have made great efforts to develop efficient compu-
tational methods for shakedown analysis. For example, Casciaro
and Garcea [21] proposed an incremental iterative method for
defining shakedown boundaries of frame structures. This method
is based on a path-following iterative scheme similar to that used
in limit analysis. Garcea et al. [15] extended this incremental itera-
tive method to the shakedown analysis of two-dimensional flat
structures in both the cases of plane stress and plane strain. Ngo
and Tin-Loi [22] proposed the p-adaptive finite element method
(FEM) as a robust and accurate approach to perform shakedown
analyses of two-dimensional plane strain problems. This method
shows great promise because it can overcome incompressibility
locking and does not need extensive meshing. Moreover, incorpora-
tion of adaptive scheme at both elastic analysis and yield surface
linearization levels is particularly computationally attractive in
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increasing performance of the p-adaptive FEM for shakedown anal-
ysis. Some other efficient numerical methods for shakedown anal-
ysis have also been reported, such as those by Boulbibane and
Ponter [17], Makrodimopoulos [18], Krabbenheft [19], and so on.
Here we concentrate on the reduced-basis technique [1-4], which
enables us to evaluate efficiently the shakedown load directly from
the static shakedown theorem.

Up to now, most numerical methods for shakedown analysis are
by means of the mesh-based methods such as finite element meth-
od and boundary element method. As an important alternative ap-
proach to eliminate the well known drawbacks in the mesh-based
methods, meshless method has received much attention in recent
years, due to their flexibility, and, most importantly, due to their
potential in negating the need for the human-labor intensive pro-
cess of constructing geometric meshes. Some representative exam-
ples are the element free Galerkin (EFG) method [26,27], the
meshless local Petrov-Galerkin (MLPG) method [28,29], the repro-
ducing kernel particle method (RKPM) [30], the smooth particle
hydrodynamics (SPH) [31] and so on. The EFG method adopted here
is a Galerkin discretization technique with the help of shape func-
tions constructed using the moving least squares (MLS) approxima-
tion. To use the MLS approximation, it is only necessary to construct
an array of nodes in the domain under consideration. Because no
element connectivities are needed, the numerical procedure of
the EFG method is quite simple. The EFG method also requires no
post-processing for the output of strains and stresses or other field
variables which are derivatives of the primary-dependent variables
since these quantities are already very smooth. Meanwhile, the EFG
method can avoid volumetric locking for nearly incompressible
materials [26,27]. Furthermore, the computational results from
the EFG method are of higher accuracy [26,27]. Consequently, the
EFG method is particularly suitable for lower bound shakedown
analysis due to the fact that it can accurately compute the fictitious
elastic stress field and the self-equilibrium stress field without
resorting to meshes or elements. The above advantages are so
attractive that applying the EFG method to numerical shakedown
analysis is of great interest and deserves study.

In this paper, our attention is focused on the EFG solution pro-
cedure for lower bound shakedown analysis. The considered struc-
ture is made up of isotropic, elasto-perfectly plastic material
governed by von Mises’ yield condition and Drucker’s postulate.
Based on the static shakedown theorem, shakedown analysis is
transformed into a problem of mathematical programming whose
optimization variables are the self-equilibrium stress field and the
shakedown load factor. The domain discretization is based on the
EFG method, where the MLS approximation is utilized to construct
trial functions and the penalty method is used to impose the essen-
tial boundary conditions. The reduced-basis technique is adopted
to express the self-equilibrium stress field by linear combination
of several self-equilibrium stress basis vectors with parameters
to be determined. These self-equilibrium stress basis vectors are
generated by performing an equilibrium iteration procedure of
elasto-plastic incremental analysis. The resulting optimization for-
mulation for shakedown analysis is reduced to a non-linear pro-
gramming with the inequality constraints of yield conditions at
every Gaussian point for all corners of the load domain. Its solution
can be obtained effectively by the complex method. Implementa-
tion details and numerical examples are presented to demonstrate
the effectiveness of the developed method.

2. Static theorem of shakedown analysis

The lower bound of shakedown load of an elasto-perfectly plas-
tic structure can be obtained using the static theorem of shake-
down analysis. The static shakedown theorem can be stated as

follows [14]: a structure will shake down to the prescribed loading
range if there exists a time independent self-equilibrium stress
field p;(x) which, superimposed on the fictitious elastic stress field
og(x, t), yields the total stress oj(x,t) not violating the yield condi-
tion at any point of the structure and for all possible load combina-
tions, namely:

loj(X,t)] = p[of(X, ) + py(X)] <O VX € Q. 1)

Here, ¢(-) is the yield function, o;(x,t) is the actual stress due to the
variable repeated loads p(x,t), ag-(x, t) denotes the fictitious elastic
stress that would appear had the structure responded to the applied
loads in a purely elastic manner, and p;(X) represents a self-equilib-
rium stress field that must satisfy equilibrium requirements within
the body Q and vanish on the part I'; of the surface where tractions

are prescribed:
pjj=0 in Q (2a)
pin;=0 on T, (2b)

where n; is the unit outward normal to the boundary I'. It should be
noticed that the classical conditions are assumed here, namely,
small displacement gradients and hence linear kinematic relations,
quasistatic loading, and an elasto-perfectly plastic material that is
stable in Drucker’s Sense.

By means of the static shakedown theorem, lower bound shake-
down analysis can now be formulated as the following non-linear
programming problem:

B =max B (3a)
st oloi(x,0)] = (p[[id,-Ej(x, ) +p;(X)] <0 vxeQ, (3b)
pijX) =0 vxeQ, (30)
pi(®)n; =0 Vvxely, (3d)

where B is load factor. The above static formulation is of bounding
character, which means that if we can find a time independent self-
equilibrium stress field p;(x) and a corresponding load factor $ such
that the yield condition (3b) is satisfied for all ¥ € Q and for all t > 0,
then provides a lower bound to the actual shakedown load factor f°.

3. Review of the element free Galerkin (EFG) method

In this paper, the element free Galerkin method (EFG) is em-
ployed to solve the formulation (3) of lower bound shakedown anal-
ysis. The EFG method is a Galerkin discretization technique based on
the moving least squares (MLS) approximation. The first form of the
EFG method was reported by Nayroles et al. [32]. Their method was
called the diffuse element method (DEM). The EFG method devel-
oped by Belytschko et al. [26] includes certain terms in the deriva-
tives of the MLS approximation that are omitted in the DEM. The
EFG method is very attractive in many problems because of its good
accuracy, ease in formulation and high stability. Up to now, remark-
able successes of the EFG method have been achieved in solving
plane elasticity [26,27], steady-state heat conduction [26], plate
analysis [33], dynamic fracture mechanics [34] and so on.

3.1. The moving least squares (MLS) approximation

In general, meshless methods require a local interpolation or
approximation to represent the trial function with the values (or
the fictitious values) of the unknown variable at some randomly lo-
cated nodes. The approximation in the EFG method is the moving
least squares approximation in which the function u(x) is approx-
imated [26-29] by

u'(x) = p'®)ax) = p(X)a(x), (4)
=1
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