Optimal fiscal and monetary policy under imperfect competition

Stephanie Schmitt-Grohé a,c,d,*, Martín Uribe b,d

a Department of Economics, Rutgers University, New Brunswick, NJ 08901, USA
b Department of Economics, University of Pennsylvania, Philadelphia, PA 19104, USA
c NBER, Cambridge, MA, USA
d CEPR, London, UK

Received 21 April 2003; accepted 1 August 2003
Available online 7 January 2004

Abstract

This paper studies optimal fiscal and monetary policy under imperfect competition in a stochastic, flexible-price, production economy without capital. It shows analytically that in this economy the nominal interest rate acts as an indirect tax on monopoly profits. Unless the social planner has access to a direct 100% tax on profits, he will always find it optimal to deviate from the Friedman rule by setting a positive and time-varying nominal interest rate. The dynamic properties of the Ramsey allocation are characterized numerically. As in the perfectly competitive case, the labor income tax is remarkably smooth, whereas inflation is highly volatile and serially uncorrelated. An exact numerical solution method to the Ramsey conditions is proposed.

JEL classification: E52; E61; E63
Keywords: Optimal fiscal and monetary policy; Imperfect competition; Friedman rule; Profit taxes

1. Introduction

In the existing literature on optimal monetary policy two distinct branches have developed that deliver diametrically opposed policy recommendations concerning
the long-run and cyclical behavior of prices and interest rates. One branch follows
the theoretical framework laid out in Lucas and Stokey (1983). It studies the joint
determination of optimal fiscal and monetary policy in flexible-price environments
with perfect competition in product and factor markets. In this group of papers,
the government’s problem consists in financing an exogenous stream of public
spending by choosing the least disruptive combination of inflation and distortionary
income taxes. The criterion under which policies are evaluated is the welfare of the
representative private agent. A basic result of this literature is the optimality of the
Friedman rule. A zero opportunity cost of money has been shown to be optimal
under perfect-foresight in a variety of monetary models, including cash-in-advance,
money-in-the-utility function, and shopping-time models.¹

In a significant contribution to the literature, Chari et al. (1991) characterize opti-
mal monetary and fiscal policy in stochastic environments. They prove that the
Friedman rule is also optimal under uncertainty: the government finds it optimal
to set the nominal interest rate at zero at all dates and all states of the world. In addition,
Chari et al. show that income tax rates are remarkably stable over the business
cycle, and that the inflation rate is highly volatile and serially uncorrelated. Under
the Ramsey policy, the government uses unanticipated inflation as a lump-sum tax
on financial wealth. The government is able to do this because public debt is assumed
to be nominal and non-state-contingent. Thus, inflation plays the role of a shock ab-
sorber of unexpected adverse fiscal shocks.

On the other hand, a more recent literature focuses on characterizing optimal
monetary policy in environments with nominal rigidities and imperfect competi-
tion.² Besides its emphasis on the role of price rigidities and market power, this lit-
erature differs from the earlier one described above in two important ways. First, it
assumes, either explicitly or implicitly, that the government has access to (endoge-
nous) lump-sum taxes to finance its budget. An important implication of this
assumption is that there is no need to use unanticipated inflation as a lump-sum
tax; regular lump-sum taxes take up this role. Second, the government is assumed
to be able to implement a production (or employment) subsidy so as to eliminate
the distortion introduced by the presence of monopoly power in product and factor
markets.

A key result of this literature is that the optimal monetary policy features an infla-
tion rate that is zero or close to zero at all dates and all states.³ In addition, the nomi-
inal interest rate is not only different from zero, but also varies significantly over the

¹ See, for example, Chari et al. (1991), Correia and Teles (1996), Guidotti and Végh (1993), and
Kimbrough (1986).
² See, for example, Erceg et al. (2000), Galí and Monacelli (2000), Khan et al. (2000), and Rotemberg
and Woodford (1999).
³ In models where money is used exclusively as a medium of account or when money enters in an
additively separable way in the utility function, the optimal inflation rate is typically strictly zero. Khan
et al. (2000) show that when a non-trivial transaction role for money is introduced, the optimal inflation
rate lies between zero and the one called for by the Friedman rule. However, in calibrated model
economies, they find that the optimal rate of inflation is in fact very close to zero and smooth.
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات