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An ensemble of multiple classifiers is widely considered to be an effective technique for improving

accuracy and stability of a single classifier. This paper proposes a framework of sparse ensembles and

deals with new linear weighted combination methods for sparse ensembles. Sparse ensemble is to

sparsely combine the outputs of multiple classifiers by using a sparse weight vector. When the

continuous outputs of multiple classifiers are provided in our methods, the problem of solving sparse

weight vector can be formulated as linear programming problems in which the hinge loss or/and the

1-norm regularization are exploited. Both the hinge loss and the 1-norm regularization are techniques

inducing sparsity used in machine learning. We only ensemble classifiers with nonzero weight

coefficients. In these LP-based methods, the ensemble training error is minimized while the weight

vector of ensemble learning is controlled, which can be thought as implementing the structure risk

minimization rule and naturally explains good performance of these methods. The promising

experimental results over UCI data sets and the radar high-resolution range profile data are presented.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, combining multiple classifiers has been a very active
research technique. It is widely accepted that combining multiple
classifiers can achieve better classification performance than a
single (best) classifier, supported by experimental results [1–3].
An ensemble means combining multiple versions of a single
classifier or multiple various classifiers. One classifier used in an
ensemble is called an individual or component classifier. There
are two important issues in combining multiple classifiers. One is
that an ensemble of classifiers must be both diverse and accurate
in order to get better performance. Diversity can ensure that all
the individual classifiers make uncorrelated errors. If classifiers
get the same errors which will be propagated to the ensemble, no
improvement can be achieved in combining multiple classifiers.
In ensemble learning, there are two schemes to implement
diversity [4]. One scheme is to seek diversity explicitly (i.e., to
define a diversity measure and optimize it), and the other is to
seek diversity implicitly. Here we consider the scheme of seeking
diversity implicitly. One common way is to train individual
classifiers by using different (randomly selected) training sets
[5–7]. Bagging [5] and Boosting [6] are well known examples of
successfully iterative methods for reducing a generalization error.
The other way is to train multiple classifiers by using different

feature sets [8,9]. In addition, accuracy of individual classifiers is
also important, since too many poor classifiers can suppress
correct predictions of good classifiers.

The other issue is about combination rules or fusion rules,
which is regarding how to combine the outputs of individual
classifiers. So far, many combination rules have been proposed
[10–16]. If the labels are available, a simple (majority) voting (SV)
rule can be used [10]. If the continuous outputs like posteriori
probabilities are supplied, an average, linear or nonlinear
combination rules can be employed [10,12,16]. Linear weighted
voting is the most frequently used rule [11,12,15]. Work on
weighted voting have addressed the problem of weights estima-
tion, in a regression setting [11,14,15], or in a classification setting
[12,17,18]. A linear weighted voting based on the minimum
classification error (WV-MCE) criterion is presented in [12], which
is solved by using gradient descent methods. In [17], a genetic
algorithm (GA) is used to select the best subset of classifiers and
the corresponding weight coefficients in neural network ensem-
bles. Grove et al. [18] suggest that we should make the minimum
margin of learned ensembles as large as possible by minimizing
training set error. They propose the LP-Adaboost method to find
the sparse weight vector.

The LP-Adaboost method in [18] and the GA-based method in
[17] are the beginning of sparse ensembles. By sparse ensembles,
we mean combining the outputs of all classifiers by a sparse
weight vector. Each classifier model has its own weight value,
zero or nonzero. Only classifiers corresponding to nonzero
coefficients play a role in the ensemble. As it is known, a sparse
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model representation in machine learning is expected to improve
the generalization performance and computational efficiency
[19–21]. The mechanism to maximize the sparseness of a model
representation can be thought of as an approximative form of the
minimizing description length principle which can be used to
improve the generalization performance [7]. The sparsity in
machine learning can be measured by the number of nonzero
coefficients in a decision function.

The above combination rules except LP-Adaboost and GA-based
methods are to try to combine all classifiers in an ensemble. In
general classifier ensembles, it is necessary to combine all
individual classifiers to ensure good performance. It results in a
large memory requirement and a slow classification speed [22].
Selective ensembles, also called pruned ensembles, are designed
to remedy the drawbacks of general classifier ensembles. Only a
fraction of individual classifiers is selected and combined by using
simple or weighted voting in selective ensembles. In [22], some
methods are introduced for selecting a subset of individual
classifiers, and the performance of these methods are compared
in several benchmark classification tasks. The problem of
selecting the optimal subset of classifiers is a combinatorial
search assuming that the generalization performance can be
estimated in terms of some quantity measured on the training set
[22]. Recently, global optimization methods, e.g., GA [23] and
semi-definite programming [24] are used to solve the combina-
torial search problem. Since the global methods cost a lot, some
suboptimal ensemble pruning methods based on ordered aggre-
gation are proposed, including reduce-error pruning [25], margin
distance minimization (MDM) [26], orientation ordering [27],
boosting-based ordering [28], expectation propagation [29], and
so on. Among the pruning techniques, MDM and boosting-based
ordering methods provide similar or better classification perfor-
mance [22]. Actually the concept of pruned ensembles is identical
with that of sparse ensembles. In pruned ensemble, the
coefficients of selected classifiers are nonzero, and unselected
are zero, which generates a sparse weight vector. Generally,
pruned ensembles use simple voting or weighted voting. The
nonzero coefficients take the value one in simple voting [22], and
a value proportional to the classification accuracy of the
corresponding classifier [30,31], or found by some optimization
methods [23,24,29] in weighted voting.

This paper gives a framework of sparse ensemble learning, and
proposes new weighted combination methods for sparse ensem-
bles. The key problem in sparse ensembles is to find a sparse
weight vector. Grove and Schuurmans use a linear programming
method to find a sparse weight vector. The objective function of
LP-Adaboost is to minimize maximum margin in [18]. Here, our
goal is to find a sparse weight vector by minimizing the ensemble
training error and simultaneously controlling the weight vector of
ensemble learning, which can be taken as implementing the
structural risk minimization rule from the view of machine
learning. In our methods, the continuous outputs (estimated
posteriori probabilities or discriminant function values) of
individual classifier are required. This learning problem can also
be formulated as linear programming problems in which sparse-
ness techniques the hinge loss or/and the 1-norm regularization
are used. In our experiments, we consider the k NN classifier as an
individual classifier and apply the new linear weighted combina-
tion rule to combine the multiple k NN classifiers.

The rest of this paper is organized as follows. In Section 2, we
propose the framework of sparse ensembles and review the
related work including some classical combination rules.
Section 3 presents new linear weighted voting based on LP.
We compare our methods with the single k NN classifier and
the k NN ensemble classifiers based on other seven combination

rules on the UCI data sets and the radar high-resolution

range profile (HRRP) data in Section 4. Section 5 concludes this
paper.

2. Sparse ensembles and other related work

In this section, we firstly propose the framework of classifier
sparse ensembles and then introduce some other combination
methods used in our experiments.

2.1. Framework of sparse ensembles

Sparse ensembles mean that we combine the outputs of all
classifiers using a sparse weight vector. Each classifier model has
its own weight value, zero or nonzero. Only classifiers corre-
sponding to nonzero coefficients play a role in the ensemble.
To reduce memory demand and improve test speed, it is required
to select an optimal sub-ensemble (or a subset of classifiers) in
pruned (or selective) ensembles [22,30–32]. Actually the concept
of pruned ensembles is identical with that of sparse ensembles. In
pruned ensemble, the coefficients of selected classifiers are
nonzero, and unselected are zero, which creates a sparse weight
vector.

Now consider a multi-class classification problem. Let a
training sample set be X ¼ fðxi,yiÞjxiARD, yiA f1,2, . . . ,cg, i¼ 1,
2, . . . ,‘g, where yi are labels of xi, D is the dimensionality of the
sample space (or the number of sample features), c is the number
of classes, and ‘ is the total number of training samples. Hereafter
we use om to denote class m, m¼1,y,c. If xiAom, then yi¼m.
The framework of sparse ensembles is shown in Fig. 1. The whole
ensemble process is divided into two phases: training phase and
test phase. In training phase, X1,X2,y,XN are the training sets of N

individual classifiers, respectively. In this phase, we need to find
the sparse weight vector a¼ ½a1,a2, . . . ,aN�

T ARN by using some
methods, such as LP-Adaboost. In the test phase, the goal is to
estimate the label of a given test sample x. Assume the j-th
classifier would generate an output vector f j ¼ ½fj1ðxÞ,fj2ðxÞ, . . . ,
fjcðxÞ�

T ARc , where fjm(x) are the output of the j-th classifier for the
sample x associated with class om, which could be posteriori
probabilities or just only discriminant values normalized to the
interval [0,1]. The ensemble output of x for class om is

f �m ¼
XN

j ¼ 1

ajfjmðxÞ ð1Þ

Fig. 1. Framework of classifier ensembles.
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