A dynamic programming approach for pricing options embedded in bonds

Hatem Ben-Ameura, Michèle Bretona,*, Lotfi Karouib, Pierre L’Ecuyerc

aGERAD, CREF, and HEC Montréal, 3000, chemin de la Côte-Sainte-Catherine, Montréal (Québec), Canada H3T 2A7
bMcGill University, Montréal, Canada
cGERAD and Université de Montréal, Montréal, Canada

Received 8 December 2004; accepted 21 June 2006
Available online 1 September 2006

Abstract

We propose a dynamic programming (DP) approach for pricing options embedded in bonds, the focus being on call and put options with advance notice. An efficient procedure is developed for the cases where the interest-rate process follows the Vasicek, Cox–Ingersoll–Ross (CIR), or generalized Vasicek models. Our DP methodology uses the exact joint distribution of the interest rate and integrated interest rate at a future date, conditional on the current value of the interest rate. We provide numerical illustrations, for the Vasicek and CIR models, comparing our DP method with finite-difference methods. Our procedure compares quite favorably in terms of both efficiency and accuracy. An important advantage of the our DP approach is that it can be applied to more general models calibrated to capture the term structure of interest rates (e.g., the generalized Vasicek model).

a,Corresponding author. Tel.: +1 514 340 6480; fax: +1 514 340 5634.
\textit{E-mail address:} michele.breton@hec.ca (M. Breton).

JEL classification: C63; G13

Keywords: Option pricing; Bond pricing; Dynamic programming; Options embedded in bonds
0. Introduction

A bond is a contract that pays its holder a known amount, the principal, at a known future date, called the maturity. The bond may also pay periodically to its holder fixed cash dividends, called the coupons. When it gives no dividend, it is known as a zero-coupon bond. A bond can be interpreted as a loan with a known principal and interest payments equal to the coupons (if any). The borrower is the issuer of the bond and the lender, i.e., the holder of the bond, is the investor.

Several bonds contain one or several options coming in various flavors. The call option gives the issuer the right to purchase back its debt for a known amount, the call price, during a specified period within the bond’s life. Several government bonds contain a call feature (see Bliss and Ronn, 1995 for the history of callable US Treasury bonds from 1917). The put option gives the investor the right to return the bond to the issuer for a known amount, the put price, during a specified period within the bond’s life. These options are an integral part of a bond, and cannot be traded alone, as is the case for call and put options on stocks (for example). They are said to be embedded in the bond. In general, they are of the American-type and, thus, allow for early exercising, so that the bond with its embedded options can be interpreted as an American-style interest-rate derivative. This paper focuses on call and put options embedded in bonds with advance notice, that is, options with exercise decisions prior to exercise benefits.

As it is often the case in practice, we assume that exercise of the call and put options is limited to the coupon dates posterior to a known protection period and that there is a notice period of fixed duration Δt. Thus, consider a coupon date t_m where the exercise is possible, and let C_m and P_m be the call and put prices at t_m. The decision to exercise or not by the issuer and the investor must be taken at t_m. If the issuer calls back the bond at $t_m - \Delta t$, he pays C_m to the investor at t_m, and, similarly, if the investor puts the bond at $t_m - \Delta t$, he receives P_m from the issuer at t_m. If no option is exercised at t_m, by the no-arbitrage principle of asset-pricing (Elliott and Kopp, 1999), the value of the bond is equal to the expected value of the bond at the next decision date, discounted at the interest rate. This expectation is taken under the so-called risk-neutral probability measure, where the uncertainty lies in the future trajectory of the (risk-free short-term) interest rate.

There are no analytical formulas for valuing American derivatives, even under very simplified assumptions. Numerical methods, essentially trees and finite differences, are usually used for pricing. Recall that trees are numerical representations of discrete-time and finite-space models and finite differences are numerical solution methods for partial differential equations. The pricing of American financial derivatives can also be formulated as a Markov decision process, that is, a stochastic dynamic programming (DP) problem, as pointed out by Barraquand and Martineau (1995). Here the DP value function, that is, the value of the bond with its embedded options, is a function of the current time and of the current interest rate, namely the state variable. This value function verifies a DP recurrence via the no-arbitrage principle of asset pricing, the solution of which yields both the bond value and the
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات