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a b s t r a c t

The linear programming (LP) bounds method was applied for computing bounds on the system reliability
of general systems based on the individual component state probabilities and joint probabilities of the
states of a small number of components. In the LP bounds method, the bounds of the system reliability
can be obtained by using LP. These bounds are useful approximations when exact solutions are costly or
unavailable. However, the size of the LP problem determined by the number of design variables and the
number of constraints increases exponentially with the number of components. This size problem is the
main drawback of the LP bounds method. This paper presents a relaxed linear programming (RLP) bounds
method to overcome this drawback of the LP bounds method. The accuracy and efficiency of the RLP
bounds method are investigated using numerical examples involving series and parallel systems.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

A system, in general, consists of a number of components, and
the state of the system depends on the states of its constituent
components. The probability that a system is in a particular func-
tioning state (system reliability), or its complement (system failure
probability), can then be expressed based on the probability of the
component states. Computation of this probability, however, is
extremely difficult, particularly when there exists a dependency
among the component states and when the number of components
is large.

The idea of using linear programming (LP) to compute bounds
on system reliability was first explored by Hailperin [1]. Kounias
and Marin [2] used the approach to examine the accuracy of some
theoretical bounds. Later, specialized versions of this approach
were employed in fields such as operations research [3]. Song
and Der Kiureghian proposed the linear programming (LP) bounds
method for computing the bounds on the failure probability of
general systems based on the joint probabilities of the states of k
components (when k = 1, these joint probabilities become the indi-
vidual component state probabilities) [4]. The LP formulation has a
number of important advantages over other existing methods (e.g.,
Boole bounds [5] or Zhang bounds [6]). They include: (a) any
‘‘level,’’ i.e., the number (k) of components considered in the joint
probabilities of the states, of information can be used, including
equalities and inequalities; (b) the statistical dependency among
component states is easily accounted for in terms of their joint

probabilities; (c) the method guarantees the narrowest possible
bounds for the given information of individual and joint compo-
nent states probabilities; (d) the method is applicable to a general
system, including a system that is neither pure series nor pure par-
allel and a system for which no theoretical formula exists; and (e)
critical components and cut sets within a system can be easily
identified [7].

There exists, however, a critical drawback in the LP bounds
method. The size of the LP problem, which is usually determined
by the number of design variables and the number of constraints,
increases exponentially with the number of components. For a sys-
tem with n two-state components, the number of design variables
in the LP bounds method is Nd = 2n. When n = 17, Nd = 131 072 and
the problem can be solved with ordinary LP solvers on a PC. When
n = 100, this number becomes Nd � 1.27 � 1030, which is enor-
mously large. The number of constraints, which depends on the
number of design variables and the level of joint state probabilities,
also becomes enormously large in the application of the LP bounds
method to a large system. This size issue—both the number of de-
sign variables and constraints—would be a hindrance in the appli-
cation of the LP bounds method to a large system.

To overcome the size issue of design variables, Der Kiureghian
and Song propose a multi-scale approach, whereby the system is
decomposed into subsystems and a hierarchy of analysis is per-
formed by considering each subsystem or set of subsystems sepa-
rately [7]. The decomposition facilitates solution of the system
reliability by the LP bounds method, whereby the large LP prob-
lems for the entire system is replaced by several LP problems of
much smaller size. This facility, however, comes at a cost; the sys-
tem bounds computed for the decomposed system can be wider
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than the bounds computed for the intact system with the same
level of probability information.

This paper proposes a relaxed linear programming (RLP) bounds
method to overcome the size problem of the LP bounds method.
The RLP bounds method employs the universal generating function
to reduce the number of design variables from 2n to n2 � n + 2. The
number of constraints can also be reduced substantially. The accu-
racy and efficiency of the RLP bounds method are investigated
using numerical examples involving series and parallel systems.

2. Review of the linear programming bounds method

Considering a system with n two-state components, Hailperin
[1] divided the sample space of component states into 2n mutually
exclusive and collectively exhaustive (MECE) events, each consist-
ing of a distinct intersection of the failure events Fi and their com-
plements Fi

�
(functional events), i = 1, 2,. . ., n. We call them the

basic MECE events and denote them by er, r = 1, 2, . . . , 2n. For exam-
ple, when n = 3, one finds 23 = 8 basic MECE events to be e1= F1\ F2

\ F3, e2 ¼ F1
�
\F2 \ F3, e3 ¼ F1 \ F2

�
\F3, e4 ¼ F1 \ F2 \ F3

�
, e5 ¼

F1

�
\ F2

�
\ F3, e6 ¼ F1

�
\ F2 \ F3

�
, e7 ¼ F1 \ F2

�
\ F3
�

, and e8 ¼
F1
�
\ F2

�
\ F3

�
(see Fig. 1). It should be noted that only the joint fail-

ure probability of k components such as P(Fi) and P(Fi\ Fj), i, j =
1, 2, . . . , n, and i – j, is known, but any probability of the basic MECE
event er, pmr

¼ PðerÞ, is not known in advance.
Because of the mutual exclusivity of the basic MECE events, the

probability of any union of these events is the sum of the corre-
sponding probabilities. In particular, the probability of any failure
event Fi is the sum of the probabilities of the basic MECE events
that constitute the event Fi. For example, for the system with three
components mentioned above, the component failure probability
is expressed as

PðF1Þ ¼ P1 ¼ pm1
þ pm3

þ pm4
þ pm7

PðF2Þ ¼ P2 ¼ pm1
þ pm2

þ pm4
þ pm6

PðF3Þ ¼ P3 ¼ pm1
þ pm2

þ pm3
þ pm5

ð1Þ

Similarly, any joint failure probability is given as the sum of the
basic MECE events that constitute the intersection events. More
generally, we write

PðFiÞ ¼ Pi ¼
X

mr :er # Fi

pmr

PðFi \ FjÞ ¼ Pij ¼
X

mr :er # Fi\Fj

pmr

PðFi \ Fj \ FlÞ ¼ Pijl ¼
X

mr :er # Fi\Fj\Fl

pmr
; etc: ð2Þ

According to the basic axioms of probability, the above proba-
bilities pm ¼ fpm1

; pm2
; . . . ; pm2ng are subject to the following linear

constraints:

X2n

r¼1

pmr
¼ 1 ð3Þ

pmr
P 0; r ¼ 1:2; . . . ;2n ð4Þ

The lower bound and the upper bound of the system failure
probability is obtained as the minimum and the maximum of the
objective function of the LP, respectively. The formulation of LP
appropriate for this analysis has the following form:

minimizeðmaximizeÞ cT pm

subject to a1pm ¼ b1

a2pm � b2 ð5Þ

where pm ¼ fpm1
; pm2

; . . . ;pm2ng is the vector of design variables and
represents the probabilities of the basic MECE events; c relates the
system failure event with the component failure events; cTpm is the
linear objective function. a1 and a2 are the coefficient matrices; b1

and b2 are the coefficient vectors. These matrices and vectors repre-
sent the information given in terms of joint failure probabilities of k
components. a1 and b1 are obtained from Eq. (2). a2 and b2 are also
obtained from Eq. (2) when one has information such as P(Fi) � x
rather than P(Fi) = x. Additional linear constraints are imposed by
the axioms of probability (Eqs. (3) and (4)) [4].

For the above three component system, if one knows P(F1) =
0.01, P(F2) = 0.02, and P(F3) = 0.03, and the objective function is
P(F1\ F2\ F3) = pm1

, then a1 and b1 based on Eq. (2) and cT are ex-
pressed as

a1 ¼
1 0 1 1 0 0 1 0
1 1 0 1 0 1 0 0
1 1 1 0 1 0 0 0

2
64

3
75 ð6Þ

b1 ¼
0:01
0:02
0:03

2
64

3
75 ð7Þ

cT ¼ 1 0 0 0 0 0 0 0½ � ð8Þ

For a system with n components, the number of design vari-
ables (Nd) is 2n. There are also one equality and 2n inequality con-
straints resulting from the probability axioms Eqs. (3) and (4),
respectively, and there are ðn1Þ þ ð

n
2Þ þ � � � þ ð

n
kÞ equality or inequality

constraints resulting from Eq. (2) when the complete set of joint
failure probabilities of each k components, i.e., the joint failure
probabilities of all combinations up to each k components, is avail-
able. Thus, the total number of constraints of the LP bounds meth-
od, Nc, can be expressed as

Nc ¼ 2n þ 1þ
n

1

� �
þ

n

2

� �
þ � � � þ

n

k

� �
ð9Þ

Note that it is not necessary to have the complete set of joint
failure probabilities of k components at a particular level. Any par-
tial set of joint failure probabilities of k components can be used.
The bounds of failure probability of a system with an incomplete
set of joint failure probabilities of k components information can
be found in Example 1 (see Section 4).

Fig. 1. The basic MECE event er for a three-event sample space.
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