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a b s t r a c t

This paper presents a robust approach to identify multi-input multi-output (MIMO) systems. Integrating
support vector regression (SVR) and annealing dynamical learning algorithm (ADLA), the proposed
method is adopted to optimize a radial basis function network (RBFN) for identification of MIMO systems.
In the system identification, first, SVR is adopted to determine the number of hidden layer nodes, the ini-
tial structure of the RBFN. After initialization, ADLA with nonlinear time-varying learning rate is then
applied to train the RBFN. In the ADLA, the determination of the learning rate would be an important
work for the trade-off between stability and speed of convergence. A computationally efficient optimiza-
tion method, particle swarm optimization (PSO) method, is adopted to simultaneously find optimal learn-
ing rates. Due to the advantages of SVR and ADLA (SVR-ADLA), the proposed RBFN (SVR-ADLA-RBFN) has
good performance for MIMO system identification. Two examples are illustrated to show the feasibility
and superiority of the proposed SVR-ADLA-RBFNs for identification of MIMO systems. Simulation results
are provided to demonstrate the effectiveness of the proposed algorithm.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

System identification is a vital work in industry applications
such as control design, plant diagnosis, and system monitoring.
Recently, identification of nonlinear MIMO systems have been used
widely in various fields (Chan, Bao, & Whiten, 2006; Felici, van
Wingerden, & Verhaegen, 2007; Goethals, Pelckmans, Suykens, &
De Moor, 2005a, Goethals, Pelckmans, Suykens, & De Moor,
2005b; Huang, Benesty, & Chen, 2006; Majhi & Panda, 2010; Rouss
& Charon, 2008; Vieira, Santos, Carvalho, Pereira, & Fileti, 2005).
However, it should be pointed out that structural identification
and parameter estimation of nonlinear MIMO systems are rather
difficult issues in system identification. Therefore, experts have
put much effort in this research field. Cardinal spline functions to
model MIMO Hammerstein systems have been adopted (Goethals
et al., 2005a, 2005b). Wang, Ding, and Liu (2007) have introduced
a hierarchical least squares algorithm for identifying MIMO ARX-
like systems based on the hierarchical identification principle. An
artificial neural network model for system identification by
expanding the input pattern by Chebyshev polynomials has been
proposed (Purwar, Kar, & Jha, 2007). A systematic way that SVR
integrating least squares regression has been proposed to identify
MIMO systems (Fu, Wu, Jeng, & Ko, 2009). A neural inverse
dynamic NARX model has been adopted to perform MIMO system
identification (Anh & Phuc, 2010).

In the neural network, RBFNs have received considerable appli-
cations, such as function approximation, prediction, recognition,
etc. (Chuang, Jeng, & Lin, 2004; Sing, Basu, Nasipuri, & Kundu,
2007; Xu, Xie, Tang, & Ho, 2003; Yu, Gomm, & Williams, 2000).
Since RBFNs have only one hidden layer and have fast convergence
speed, they are widely used for nonlinear system identification
recently (Apostolikas & Tzafestas, 2003; Chen, Hong, Luk, & Harris,
2009; Falcao, Langlois, & Wichert, 2006; Fu et al., 2009; Li & Zhao,
2006). Besides, the RBFNs are often referred to as model-free esti-
mators since they can be used to approximate the desired outputs
without requiring a mathematical description of how the outputs
functionally depend on the inputs (Kosko, 1992).

When utilizing RBFNs, the number of hidden layer nodes, the
initial parameters of the kernel, and the initial weights of the net-
works must be determined first. However, a systematic way to
determine the initial structure of RBFNs has not been established
yet. In many cases, these parameters are determined according to
the experience of the designer or just chosen randomly. For exam-
ple, in Falcao et al. (2006), Manrique, Rios, and Rodriguez-Paton
(2006), and Sarimveis, Alexandridis, Mazarakis, and Bafas (2004),
the number of hidden layer nodes is fixed according to the choice
of the designer first. Then different kinds of algorithms such as the
least squares method, the gradient descent method, and the genet-
ic algorithm are used to optimize the parameters. However, such
kind of improper initialization usually results in slow convergence
speed and poor performance of the RBFNs. Meanwhile, a learning
rate serves as an important role in the procedure of training RBFNs.
Generally, the learning rate is selected as a time-invariant constant
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by trial and error (Chuang et al., 2004; Chuang, Su, & Hsiao, 2002;
Fu et al., 2009; Hsieh, Sun, Lin, & Liu, 2008). However, there still ex-
ist several problems of unstable or slow convergence. Some
researchers have engaged in exploring the learning rate to improve
the stability and the speed of convergence (Song, Zhang, & Sun,
2008; Yoo, Park, & Choi, 2007; Yu, 2004).

Recently, support vector machine (SVM) has been successfully
used in various fields due to the potential capability of handling
classification tasks in the case of high dimensionality and sparsity
of sampling data (Camps-Valls, Munoz-Mari, Martinez-Ramon,
Requena-Carrion, & Rojo-Alvarez, 2009; Goethals et al., 2005a,
2005b; Manel et al., 2006; Suykens, 2001; Vapnik, 1998). In some
research (Espinoza, Suykens, & De Moor, 2005; Fu et al., 2009;
Gao, Dai, Zhu, & Tang, 2007; Lima, Coelho, & Von Zuben, 2007),
SVR algorithm has been adopted for nonlinear system identifica-
tion. In this paper, in order to overcome the above problems of
training RBFNs, first, an SVR method with Gaussian kernel function
(Gao et al., 2007; Hua & Zhang, 2006; Vapnik, 1995) is adopted to
determine the initial structure of the RBFNs for identifying nonlin-
ear systems. This means that the proposed method is to use the
SVR method to determine the number of hidden layer nodes and
the initial parameters of the kernel. After initialization, an anneal-
ing robust concept (Chuang et al., 2002; Fu et al., 2009) with
dynamical learning algorithm (ADLA) is then applied to train the
RBFN (ADLA-RBFN), in which PSO method is adopted to find opti-
mal learning rates during learning procedure. Two simulation
examples will be given to illustrate the feasibility and efficiency
of the proposed SVR-based ADLA-RBFNs (SVR-ADLA-RBFNs) for
identification of MIMO systems.

This paper is organized as follows. Section 2 describes the
RBFNs for identification of nonlinear MIMO systems. In Section 3,
an ADLA based on SVR is introduced to train RBFNs, in which a
nonlinear time-varying evolution concept is induced. In Section
4, a population-based stochastic searching method and a fitness
function evaluating populations of PSO are presented. Section 5
provides the proposed algorithm and flowchart for SVR-ADLA-
RBFNs using the PSO approach. Simulation results of system iden-
tification for two MIMO examples are illustrated to evaluate the
SVR-ADLA-RBFNs in Section 6. Section 7 brings conclusions for
the main contributions of this paper.

2. RBFNs for identification of nonlinear MIMO systems

In general, the input–output relation of a nonlinear MIMO sys-
tem can be expressed as

yðt þ 1Þ ¼ fðyðtÞ; yðt � 1Þ; . . . ; yðt � nyÞ; xðtÞ; xðt � 1Þ; . . . ;xðt � nuÞÞ;
ð1Þ

where xðtÞ ¼ x1ðtÞ � � � xmðtÞ½ �T is the input vector,
yðtÞ ¼ y1ðtÞ � � � ypðtÞ

� �T is the output vector, nu and ny are the
maximal lags in the input and output, respectively, and
fðtÞ ¼ f1ðtÞ � � � fpðtÞ

� �T denotes the nonlinear relation to be
estimated.

One can use a neural network to estimate the input–output
relation of a nonlinear MIMO system. In this paper, an RBFN will
be adopted since it has a simple structure as shown in Fig. 1. When
the Gaussian function is chosen as the radial basis function, an
RBFN can be expressed in the form

ŷjðt þ 1Þ ¼
XL

i¼1

Giwij ¼
XL

i¼1

wij exp �kx�mik2

2r2
i

 !

for j ¼ 1;2; . . . ; p; ð2Þ

where xðtÞ ¼ x1ðtÞ � � � xmðtÞ½ �T is the input vector,
ŷðtÞ ¼ ŷ1ðtÞ � � � ŷpðtÞ

� �T is the output vector of the RBFN, wij is

the synaptic weight, Gi is the Gaussian function, mi and ri are the
center and width of Gi, respectively, and L is the number of the
Gaussian functions, which is also equal to the number of hidden
layer nodes.

Given a set of training input–output pairs (x(k),y(k)), k = 1, 2, . . . ,

N, where xðkÞðtÞ ¼ xðkÞ1 ðtÞ � � � xðkÞm ðtÞ
h iT

and yðkÞðtÞ ¼ yðkÞ1 ðtÞ � � �
h

yðkÞp ðtÞ�T, the identification problem of the nonlinear MIMO system
is to determine the values of L, wij, mi, and ri to minimize the fol-
lowing performance index

J ¼
XN

k¼1

kyðkÞ � ŷðkÞk2
; ð3Þ

where ŷðkÞ is the corresponding output of the RBFN when the input
of the network is x(k).

It is very difficult, if not impossible, to solve the above problem
directly. In usual cases, the initial values of L, wij, mi, and ri are cho-
sen first. Then a training algorithm is applied to the RBFN to search
for the optimal combination of these values in an iterative manner.
However, as mentioned above, there is no way to choose the initial
values of L, wij, mi, and ri systematically. Therefore, in the following
section, an SVR approach will be proposed to serve for this purpose.

3. SVR-ADLA-RBFNs

3.1. SVR-based initial structure of RBFNs

When approximating an unknown function, SVR method
(Vapnik, 1995) can be adopted to build the initial structure of
RBFNs. Meanwhile, assume that a set of basis functions, gl(x),
l = 1, 2, . . . , M, is given. Then the problem of function approxima-
tion is transformed into finding the parameters of the following ba-
sis linear expansion

f ðx; hÞ ¼
XM

l¼1

hlglðxÞ þ b; ð4Þ

where h = (h1,h2, . . . ,hM) is a parameter vector to be identified and b
is a constant to be determined.

From SVR method, one can find that the solution is to find f(x,h)
in Eq. (4) that minimizes

RðhÞ ¼ 1
N

XN

k¼1

Le yðkÞ1 � f ðxðkÞ; hÞ
� �

; ð5Þ

subject to the constraint

khk2
< C; ð6Þ

where Le(�) is the e-insensitive loss function defined as
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Fig. 1. The structure of a radial basis function network.
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