
Pattern Recognition 42 (2009) 3215 -- 3223

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.e lsev ier .com/ locate /pr

On-line hand-drawn electric circuit diagram recognition using 2D
dynamic programming

Guihuan Fenga, Christian Viard-Gaudinb, Zhengxing Suna,∗

aState Key Laboratory for Novel Software Technology, Nanjing University, 210093 Nanjing, China
bIRCCyN/UMR CNRS 6597, Ecole Polytechnique de l'Université de Nantes, France

A R T I C L E I N F O A B S T R A C T

Article history:
Received 8 August 2008
Received in revised form 15 January 2009
Accepted 26 January 2009

Keywords:
On-line sketch recognition
Electric circuit diagram
Dynamic programming

In order to facilitate sketch recognition, most online existing works assume that people will not start to
draw a new symbol before the current one has been finished. We propose in this paper a method that
relaxes this constraint. The proposed methodology relies on a two-dimensional dynamic programming
(2D-DP) technique allowing symbol hypothesis generation, which can correctly segment and recognize
interspersed symbols. In addition, as discriminative classifiers usually have limited capability to reject
outliers, some domain specific knowledge is included to circumvent those errors due to untrained patterns
corresponding to erroneous segmentation hypotheses. With a point-level measurement, the experiment
shows that the proposed novel approach is able to achieve an accuracy of more than 90 percent.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Sketches are widely used in engineering and architecture fields,
especially for the early design phases [1]. This is mainly due to the
fact that a sketch is a convenient tool to catch rough ideas, so that
the designers can focus more on the critical issues rather than on the
intricate details [2]. The problem is that although it seems so quick
and intuitive for humans to recognize sketches, it is really a great
challenge for the computer [3].

A difficult task in sketch recognition is to have a good balance
between the drawing freedom and the complexity of recognition.
Generally, the more freely a system can endure, the more difficult
sketch recognition will be. Consequently, for the sake of simplicity,
most of the existing online recognition techniques are based on the
assumption that people will not start to draw a new symbol before
the current one has been finished. Obviously this is not always the
case. One of the greatest advantages of sketch-based interface is that
it provides a natural and free interaction platform. Therefore, it is
a significant attempt to try solving the situation with interspersed
symbols.

Like speech or text recognition, sketch recognition itself is domain
dependent [3]. Domain knowledge to some extent can help recogni-
tion. Sketch recognition focuses on the localization and recognition of
its constitutional components; the problem is that although isolated
symbol recognition has been studied for many years, it still suffers in
correctly rejecting outliers. Consequently, recognition based only on

∗ Corresponding author. Tel./fax: +862583686099.
E-mail address: szx@nju.edu.cn (Z. Sun).

0031-3203/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2009.01.031

symbolic similarity is prone to errors. In this paper, we include con-
textual constraints to help to solve this problem. Here, constraints
refer to the connectivity requirement of symbols, and we introduce
a tolerant connectivity evaluation strategy.

This contribution is an extension of the work introduced in
[4]. The dataset used for validating the proposed method has been
extended from 10 to 15 subjects, with a total number of 130 sketches
instead of 87. Furthermore, we have reformulated the problem
statement and introduced the solution from a theoretical point of
view. Additional experiments have also been conducted to assess
the sustainability of a cost function combining pattern recognition
information with soft contextual cost, which is a key point of the
proposed framework.

The remainder of the paper is organized as follows. Section 2 pro-
vides a review of related works. Section 3 formulates sketch recogni-
tion as a dynamic programming problem. The details of our approach
are presented in Section 4, followed by the experimental results in
Section 5. Finally, conclusion and proposed future works are drawn
in Section 6.

2. Related works

As mentioned before, many efforts have been done concerning
the recognition of isolated symbols that are segmented explicitly by
pausing [5] or by switching between different input modes [6]. For
example, Rubine [7] proposed an 11-dimensional feature vector to
describe a single stroke. Works in [2,8] are analogous, except that
stroke segmentation is included, so they can recognize symbolsmade
of multiple strokes. More research on isolated symbol recognition
can be found in [9].

http://www.sciencedirect.com/science/journal/pr
http://www.elsevier.com/locate/pr
mailto:szx@nju.edu.cn


3216 G. Feng et al. / Pattern Recognition 42 (2009) 3215 -- 3223

In order to make sketch-based interaction more free and natu-
ral, researchers are working on the automatic parsing and recogni-
tion of continuous streams of strokes. Sezgin and Davis [10] made
full use of different people's drawing styles to improve both effi-
ciency and performance; Costagliola and Deufemia [11] proposed a
left right (LR) based sketch parsing strategy; Sim-U-Sketch [12,13]
is a sketch-based interface that depends on a hierarchical “mark-
group-recognize” sketch understanding architecture; Gennari et al.
[14] employed ink density and stroke characteristics to enumer-
ate candidate symbols; Alvarado and Davis [15] developed a pars-
ing approach based on dynamically constructed Bayesian networks.
However, although all these works aim at developing automatic
recognition techniques, few of them have addressed the problem of
dealing with interspersed symbols. Most of the existing researches
are based on the assumption that symbols will not be drawn tem-
porally overlapping each other, which is not always the case. Al-
though Sezgin and Davis [16] extended their approach to recognize
interspersed symbols, it still exists a high dependency on the draw-
ing order of strokes. Also, as it concerns only temporal patterns, no
spatial or geometric constraint is incorporated. Thus, it is difficult
to distinguish symbols that have the same constituent elements but
with different structures, such as two horizontal lines and a vertical
capacitor.

Hammond and Davis proposed a sketching language LADDER
[17]. However, their approach can only describe regular shapes with-
out too much detail, and it is highly dependent on the recognition
accuracy of the low level primitives. Our system performs well even
when symbols are drawn with over-traced strokes. Saund et al. [18]
solved the sketch recognition problem from a perceptual perspec-
tive. Gestalt theory is introduced, which argues that human performs
domain-independent groupings to locate salient objects. However,
it is more suitable for the clustering of texts instead of diagrams.

Domain-specific knowledge is essential in designing a robust
sketch recognition system, and it has been widely used in image [19]
and video [20] understanding, as well as the recognition of handwrit-
ten zip codes [21]. A variety of circuit recognition systems [12–15]
have utilized connectivity constraints to help to improve perfor-
mances. However, in most previous works, connectivity constraints
are defined as binary heuristic rules, where a threshold is defined
to test whether or not the required connectivity is fulfilled. Since
sketches are imprecise in nature, binary connectivity evaluation is
prone to errors. Again, due to the moderate rejecting capability of
most symbol classifiers to the outliers, we believe that by combining
connectivity evaluation with parsing strategy it will greatly help to
solve such problems.

In this paper, sketch recognition is formulated as a two-
dimensional dynamic programming (2D-DP) problem to process
the situations with interspersed symbols. Also, a tolerant connec-
tivity function is proposed to improve both the efficiency and the
performance.

3. Problem formulation

Dynamic programming is a powerful tool that can be used to solve
planning and decision-making problems [22], and it has been applied
to a wide variety of problem domains. The definition of a dynamic
programming scheme usually requires the following points:

(1) Divide the problem into several stages.
(2) Identify several possible states at each stage.
(3) Make decisions to change the starting state of this stage and

continue to its ending state, which will also be the starting state
of the next stage.
Note that the decision made on each state will affect the state for
the next stage. In each stage, a decision that achieves a reward

closer to the maximum or minimum total reward is desirable.
(4) Define a recursive relationship between the value of the decision

at the stage and the previously found optima, i.e. the optimal
decision function contains itself in its definition

f ∗
k (sk) = opt

uk
{vk(sk,uk) + f ∗

k+1(sk+1)} (1)

where sk represents the starting state of the kth stage, uk rep-
resents the decision made in the kth stage, vk denotes the tran-
sition cost from sk to sk+1, fk denotes the function for finding
the optimal decision, and opt is the optimal value (maximum or
minimum) among all of the uk which optimizes fk.

To automatically extract symbols from a freeform sketch, this
paper proposes the formulation of the problem with the following
Dynamic Programming notations:

(1) stages: number of symbols in the sketch, which is unknown and
varies in our application;

(2) state at a stage: defined as an ordered pair (S,V), where S
denotes the set of segments extracted after preprocessing, and
V represents the set of recognized segments, which is a subset
of S;

(3) decision: the newly recognized symbol (V
′
–V), V

′
being a super-

set of V, which comes from hypothesis Hi;
(4) the sketch recognition task can be formulated as

f (S,�) = 0
f (S,V ′) = f (S,V) + costL(V ′ − V); V ⊂ V ′ ⊆ S

}
(2)

An on-line sketch is basically a sequence of strokes, where a stroke
is a sequence of points starting with a pen-down and ending with a
pen-lift. Before carrying out the recognition stage itself, each stroke
is separated into segments that correspond to perceptual graphical
primitives. This is done by an over-segmentation preprocessing step,
which assumes that each of the resulting segments belongs to at
most one symbol. As a consequence, a symbol is a group of segments
that corresponds to a specific label in a domain, such as a resistor or
a capacitor in an electric circuit diagram. Sketch recognition starts
from (S, �), where no symbol has been recognized. Each time a
group of segments is added, a new symbol is recognized and f is
updated with the recognition cost of (V

′
–V) (details of how such

cost is computed will be illustrated in Section 4.3). The different
combinations of segments correspond to different sequences of costs,
yielding to different f values. The bigger the cost is, the less likely a
true symbol it is. Therefore, the aim of sketch recognition is to find
the optimal division {Hi} that minimizes the final cost [4], as shown
below:

arg min
{V ′–V}

f (S, S) (3)

4. Proposed approach

4.1. Flow chart

There are two opposite kinds of strategies to perform online
sketch recognition. One is called immediate feedback, which means
once a stroke is drawn, sketch recognition will start. The advantage
of such strategy is that users can view the recognition results in
real time. But it will, to some extent, distract the user during the
design task [23]. Again, due to the lack of complete drawing context,
such methods always need to place constraints to the drawing style
of some specific symbol. In this paper, we adopt another strategy,
namely lazy feedback, which means recognition starts only after the



http://isiarticles.com/article/25501

