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a  b  s  t  r  a  c  t

This  paper  presents  an  optimal  training  subset  for  support  vector  regression  (SVR)  under  deregulated
power,  which  has a distinct  advantage  over  SVR  based  on  the  full  training  set,  since  it solves  the  problem
of  large  sample  memory  complexity  O(N2) and  prevents  over-fitting  during  unbalanced  data  regression.
To compute  the  proposed  optimal  training  subset,  an  approximation  convexity  optimization  framework
is constructed  through  coupling  a penalty  term  for the  size  of  the  optimal  training  subset  to the  mean
absolute  percentage  error (MAPE)  for the  full training  set prediction.  Furthermore,  a  special  method  for
finding the  approximate  solution  of  the  optimization  goal  function  is introduced,  which  enables  us  to
extract  maximum  information  from  the full  training  set  and  increases  the  overall  prediction  accuracy.  The
applicability  and  superiority  of the  presented  algorithm  are  shown  by the  half-hourly  electric  load  data
(48 data  points  per day)  experiments  in New  South  Wales  under  three  different  sample  sizes.  Especially,
the  benefit  of  the developed  methods  for large  data  sets  is demonstrated  by the  significantly  less CPU
running  time.

© 2012  Elsevier  B.V.  All rights  reserved.

1. Introduction

The load prediction is invaluable in the daily operations of
a power utility. It is used for various purposes, such as price
and income elasticities, energy transfer scheduling, unit commit-
ment and load dispatch. With the emergence of load management
strategies, the load prediction has played a broader role in utility
operations [1].  Thus, the development of an accurate, fast, sim-
ple and robust load prediction algorithm is important to electric
utilities and its customers.

As the advances in statistical learning theory, support vector
regression (SVR) model has become very promising and popular
due to its attractive features and profound empirical performance
for small sample, nonlinearity and high dimensional data applica-
tion [2–5]. Quan et al. [6] proposed a weighted least squares SVR
local region algorithm for nonlinear time series. Pai and Hong [7]
proposed a recurrent SVR model with genetic algorithms to fore-
cast regional electricity load. Using a robust SVR algorithm, Zhan
and Cheng [8] reported a harmonic and inter-harmonic analysis
of electric power system. Hybridizing two dissimilar models, liter-
ature [9–11] pointed out that further performance improvement
could be made for forecasting in the competitive market.
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Based on the VC dimension theory and structural risk minimiza-
tion principle, the quality and complexity of the SVR solution do
not depend on the dimensionality of the input space directly. Then,
the solution is optimized by solving a large-scale quadratic pro-
gramming problem with linear and box constraints. The memory
complexity of this problem, however, is O(N2) (N is the num-
ber of training data points). As a result, some application models
of medium or large training sample size are hard to load into
memory, and cannot be solved by standard SVR. Determining an
optimal training subset in medium or large sample size situation
is very important for generalization performance, computational
efficiency, high prediction accuracy and data interpretability of
SVR prediction [12]. On the other hand, redundant data not only
are useless for SVR prediction but also could lead to low com-
putational efficiency and low accuracy potentially. Thus, what
redundant information should be ignored in training set has been
a central topic in the areas such as statistics, pattern recogni-
tion, machine learning, and computer vision. Recently, Moustakidis
and Theocharis [13] proposed an efficient filter feature selection
method for achieving a satisfactory trade-off between classification
accuracy and dimensionality reduction. Using an improved genetic
algorithm, Yang et al. [14] and Hamdani et al. [15] presented two
feature selection algorithms. Yang and Yang [16] introduced a novel
condensing tree for feature selection. Liao [17] studied neural mod-
els using the smallest best feature subsets of a bladder cancer data
set for classification. Past work on feature selection has emphasized
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the feature extraction and classification, however, less attention
has been given to the critical issue of training data set reduction
and time series prediction. Only the training data points near deci-
sion boundary (namely support vectors) have impact on the final
prediction model, inspired by that, we present a training data set
reduction algorithm for SVR. For these reasons, optimal training
subset, which represents maximum information of the full train-
ing set, is presented to supply a balanced data with relatively small
training sample size for SVR. Furthermore, an approximation con-
vexity optimization framework for computing the optimal training
subset is proposed in our study, and a stopping criteria for the algo-
rithm is established. K optimal training subset, a new algorithm put
forward tentatively, is employed to obtain naturally sparse optimal
training subset. Further studies on convexity will be summarized
in our next study.

To show the applicability and superiority of the presented algo-
rithm, half-hourly electric load data (48 data points per day) in New
South Wales are collected. Before choosing neural networks, sta-
tistical methods and other hybrid models, the nature and intended
use of electric load data should be consider carefully. The results
of the comparison experiments prove that time serial forecasting
and control system based on this algorithm have the following
advantages: (1) Since we establish an approximation convexity
optimization framework for computing the optimal training subset,
the subset can extract maximum information of the full training set
with minimum size. (2) Faster response capability with high preci-
sion for medium and large size training set. (3) Robust to parameter
variation.

In Section 2 of this paper we present the new algorithm for
forecasting, and the main steps of the method are given. Then, the
possible reasons behind the proposed technique are explained. In
Section 3 we introduce the research design, the data description
and three performance measures. Numerical results obtained and
comparisons are presented and discussed in Section 4. In Section 5
we briefly review this paper and present the future research.

2. The explicit process of the new algorithm

2.1. Nonlinear dynamics and data preprocess

The goal of prediction is to infer objects’ future under their own
development rules. A nonlinear prediction algorithm is employed
in the present study to make predictions of electric load dynamics.
In this algorithm, a single-variable time series is translated into a
multi-dimensional phase space, which indicates the system state
at different time. According to Takens’s embedding theorem [18],
a scalar time series (e.g. electric load series) yt, where t = 1, 2, . . .,  T,
can be reconstructed as follows

Yj = [yj, yj+�, yj+2�, . . . , yj+(m−1)�] (1)

where j = 1, 2, . . .,  T − (m − 1)�,  m is the embedding dimension, � is
the time delay. Based on phase space reconstruction in a dimen-
sion m, we can construct the underlying dynamics in the form of a
reflection F : Rm → Rm which makes

Yj+1 = F(Yj) (2)

where Yj and Yj+1 are vectors of dimension m,  describing the state of
the system at times j (present state) and j + 1 (future state), respec-
tively.

Then forecasting reflection F : Rm → Rm can be denoted as:

Yj+1 = F(Yj) (3)

That is:

yj+1 = F(Yj) (4)

Here, it is nonlinear and needs to find a specific function expres-
sion, which can be obtained by utilizing ε-SVR’s good ability of
simulating nonlinear reflection.

Before ε-SVR can be trained with the training data, the data must
be normalized over a range so as to determine the parameters’ val-
ues of ε-SVR [19]. Various normalization methods are generally
used for this purpose. Liu et al. [20] compared 6 different nor-
malization methods based on the RPROP algorithm used for target
recognition, they concluded that the linear normalization method
and the component-whitening method have given almost the best
results and are simple in concept. For the simple, we  map  the data
linearly over a specified range [ymin, ymax] in this study. Assumed
that y′

max and y′
min are the maximum and minimum values of the

range for the transformed variable; and ymax and ymin are the max-
imum and minimum values of the training data. So each value of a
variable y is transformed as follows:

y′ = P(y) = A × y + B (5)

Since (ymax, y′
max) and (ymin, y′

min) are two  points of the above
formula, so we can get the constants A and B as follows:{

A = {y′
max − y′

min}/{ymax − ymin}
B = y′

max − {{y′
max − y′

min}/{ymax − ymin}} × ymax
(6)

After the employment of the proposed method, the data can
revert to the un-normalized data by the following formula.

y = P−1(y′) = (y′ + B)
A

(7)

2.2. Support vector regression

Support vector regression (SVR) [21] is a regression technique
utilizing kernel functions, that is a nonlinear extension of the Gen-
eralized Portrait algorithm developed in Russia in the sixties. This
subsection briefly introduces SVR, which performs the nonlinear
mapping for time-series forecasting; and we refer the reader to the
excellent surveys for a more thorough coverage of it [22–26].

Suppose we  are given training data (x1, y1), . . . , (xn, yn) ⊂ W ×
R, where W denotes the space of the input patterns xi (e.g. W = R

n),
and yi is the associated output values of xi. In ε-SVR [27], our aim
is to produce a function F(x) that has at most ε deviation from the
actually obtained targets yi for all training data, and simultaneously,
is as “flat” as possible. That is, we do not care about errors as long as
they are less than ε, but will not tolerate any deviation larger than
this. Hence we arrive at the formulation stated in [27] for ε-SVR.

min
ω,b,�,�∗

1
2

ωT ω + C

n∑
i=1

(�i + �∗
i ) (8)

s.t.

⎧⎪⎨
⎪⎩

yi − (〈ω, xi〉 + b) ≤ ε + �i

(〈ω, xi〉 + b) − yi ≤ ε + �∗
i

�i, �∗
i

≥ 0

(9)

where n represents the number of samples, the constant C > 0
decides the trade-off between the flatness of F(x) and the amount
up to which deviations larger than ε are tolerated, �i denotes the
upper training error, whereas �∗

i
is the lower training error sub-

ject to ε-insensitive tube |yi − (〈ω, xi〉 + b)| ≤ ε. This ε-insensitive loss
function |�ε| can be described by the following equation.

|�|ε :=
{

0, if|�| < ε

|�| − ε, otherwise
(10)

Instead of minimizing the observed training error, ε-SVR
attempts to minimize the generalization error bound so as to
achieve generalized performance, and this makes ε-SVR very robust
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