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a b s t r a c t

As one of important nonparametric regression method, support vector regression can achieve nonlinear
capability by kernel trick. This paper discusses multivariate support vector regression when its regression
function is restricted to be convex. This paper approximates this convex shape restriction with a series of
linear matrix inequality constraints and transforms its training to a semidefinite programming problem,
which is computationally tractable. Extensions to multivariate concave case, ‘2-norm Regularization, ‘1

and ‘2-norm loss functions, are also studied in this paper. Experimental results on both toy data sets
and a real data set clearly show that, by exploiting this prior shape knowledge, this method can achieve
better performance than the classical support vector regression.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Avoiding strong prior assumptions on functional forms, non-
parametric regression methods are powerful tools for data descrip-
tion and exploration. The major advantage of these methods is that
they do not require analysts to explicitly specify a given parametric
structure on the data; instead, the data are allowed to ‘‘speak for
themselves’’. Nonparametric regression methods are attracting
increasing attention from many areas [45,10].

Even though an analyst may not know the exact form of the
relationship, he/she usually has some prior knowledge of its shape,
such as monotone and convex. Typical examples appear in eco-
nomics (utility function, production or cost functions), medicine
(dose response experiments) or biology (growth curves). For a ra-
tional consumer, his/her utility function is widely recognized to
be non-decreasing and concave. By fitting an explicitly specified
function, parametric methods can certainly obtain estimation that
satisfies prior-known shape restrictions. But parametric methods
are vulnerable to model specification error. It is widely recognized
by nonparametric statisticians that shape-restricted nonparamet-
ric regression can better predict the relationship between predic-
tors and responses.

Shape-restricted nonparametric regression dates back to sem-
inal works [15,7]. The first paper dealt with least squares estima-
tion of a concave function, while the second discussed the
estimation of monotone functions. Since then, a lot of results
on different

shape-restricted nonparametric regression methods have been
published. One can refer to [8] and, more recently, [49] for the
literature on isotonic regression, i.e. monotone regression. In
case of convex or concave regression, some statistical properties
of concave regression [15], such as consistency, rate of conver-
gence and asymptotic distribution, have been analyzed by
[13,23,12]. There is vast literature on shape-restricted nonpara-
metric regression. The mainly concerned shapes include monoto-
nicity, convexity, concavity, super-modularity, unimodality, etc.
Alternative to least-squares minimization, many spline, kernel
smoothing and wavelets-based techniques have been applied in
shape-restricted nonparametric regression.

This paper focuses on estimating a multivariate regression func-
tion when it is known to be convex or concave. The extension from
univariate convex nonparametric regression to multivariate
convex regression is not straightforward. For univariate nonpara-
metric regression, the convex shape restriction requires its sec-
ond-order differential to be non-negative. While in d-dimension
(d P 2) multivariate nonparametric regression, this convex shape
restriction is equivalent to positive semidefinite requirements of
Hessian matrix on its domain. Though univariate convex nonpara-
metric regression has been extensively researched, there are few
work on multivariate case, except [2,26,27,1,17,33]. Matzkin
[26,27] considered the case where the variable of interest was dis-
crete. In [2,1], the regression function was assumed to be contam-
inated by errors with specified distributions, so it could be
obtained by maximum likelihood estimation. Instead of specifying
error distributions, [17,33] acquired regression function by least
squares minimization. The most important obstacle of the above
methods is that they can only obtain piece-linear surface, which
is not differentiable at knots.

0950-7051/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.knosys.2011.12.010

⇑ Corresponding author. Tel.: +86 571 28877720; fax: +86 571 28877705.
E-mail addresses: wangyq@zjgsu.edu.cn (Y. Wang), nihe@zjgsu.edu.cn (H. Ni).

Knowledge-Based Systems 30 (2012) 87–94

Contents lists available at SciVerse ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/ locate /knosys

http://dx.doi.org/10.1016/j.knosys.2011.12.010
mailto:wangyq@zjgsu.edu.cn
mailto:nihe@zjgsu.edu.cn
http://dx.doi.org/10.1016/j.knosys.2011.12.010
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys


This paper proposes an alternative nonparametric estimation of
multivariate convex or concave regression function, which is based
on support vector regression [35]. Support vector regression be-
longs to kernels methods [32,34], which have found successful
applications in many areas such as credit risk evaluation [44,21],
fraud detection [28] and time series forecasting[47,46]. To achieve
nonlinear regression, support vector regression forms an optimal
linear regressive hyperplane by a mapping from the input space
to a higher-dimension feature space. Support vector regression
has great advantage over [2,1,17,33], because its regression func-
tion is smooth and differentiable everywhere.

Incorporating qualitative prior shape knowledge into support
vector regression has been explored by [29,39]. [29] built mono-
tone least squares support vector machine, which imposed the
monotonicity-related constraints on every pair monotone samples.
[39] also analyzed support vector regression when the derivatives
of the regression function was restricted to be boundary, which in-
cluded monotone, convex and concave shape restrictions. But [39]
can not be generalized to bivariate or multivariate convex and con-
cave cases, which needs semidefinite constraints, instead of com-
mon linear inequality constraints. It is also widely known in
machine learning and neural networks area that one can achieve
better performance by incorporating prior knowledge [19]. Litera-
ture on prior knowledge based support vector machine includes
[11,29,25,20].

This paper employs semidefinite programming to solve convex
or concave multivariate support vector regression. Applications of
semidefinite programming also can be found in [18]. In our meth-
od, the convex shape restriction, approximated by a series of linear
matrix inequality constraints on every training points, can force
the regression function to be convex or concave. By this way, this
method uses this prior shape knowledge on the function between
predictors and responses. We expect that this exploitation of prior
qualitative shape knowledge can improve out-of-sample regres-
sion performance. It is obvious that this method has two novelties.
First, compared with parametric methods, its nonparametric char-
acteristics can efficiently avoid model specification error. Second,
maximization of the additional regularization term enables the
method to minimize not only the empirical error, but also the gen-
eralization error.

The paper is organized as follows. Section 2 introduces the main
idea of solving multivariate convex or concave support vector
regression by semidefinite programming. The capability of our
method is verified by two artificial data sets and one real data
set in Section 3. Other variants, including loss functions and regu-
larization terms, are analyzed in Section 4. The paper is concluded
in Section 5.

All vectors are column vectors written in boldface and lowercase
letters whereas matrices are boldface and uppercase, except for the
ith row of a matrix A that is denoted Ai. The vectors 0 and 1 are vec-
tors of appropriate dimensions with all their components respec-
tively equal to 0 and 1. I is the identity matrix with appropriate
size. The matrix X 2 RN�d contains all the training samples xi,
i = 1, . . . ,N, as rows. The vector y 2 RN contains all the target values
yi for these samples. k : Rd � Rd ! R is the kernel function. For
A 2 Rm�d and B 2 Rn�d containing d-dimensional sample vectors,
the kernel K (A,B) maps Rm�d � Rn�d to Rm�n with K(A,B)i,j = k(Ai,Bj).
The kernel matrix K(X,X) will be written K for short. For a vector v,
diag(v) is the diagonal matrix with the components of v on its diag-
onal. For a collection of symmetric matrices A1, . . . ,Ai, diag(A1, . . . ,Ai)
is the block diagonal matrix with the diagonal blocks A1, . . . ,Ai.

diagðA1; . . . ;AiÞ ¼
A1

. .
.

Ai

0
BB@

1
CCA: ð1Þ

For any symmetric square matrix A, A � 0 means that A is positive
semidefinite and A � 0 means that A is negative semidefinite.

2. Multivariate convex support vector regression

2.1. Support vector regression

Let samples fðxi; yiÞg
N
i¼1 � X i � R be the training data, where

X � Rd is a closed and convex set. The object of nonparametric
regression is to find a function f : X ! R;x! f ðxÞ that minimizes
the objective

min
f2H

1
N

XN

i¼1

Lðf ðxiÞ; yiÞ þ Ckfk2
K ; ð2Þ

where L(�, �) denotes the chosen loss function, kfkK is the norm in the
reproducing kernel Hilbert space ðHÞ defined by the kernel k(x,x0), C
is a free parameter introduced to tune the trade-off between the
empirical error minimization and the regularization term maximi-
zation. A large C might make the model not sufficiently flexible to
explain the data, while a small C might cause overfitting. According
to [43], the framework (2) includes the entire family of smoothing
splines, additive and interaction spline models.

To make the above estimation implementable, two components
should be explicitly specified. The first is the loss function L. Typi-
cal choices of L include:

� ‘1-norm loss. This loss puts the most weight on small residuals
and the least weight on large residuals. This penalty allows less
either zero or very small residuals but relatively more large
residuals.

Lðf ðxiÞ; yiÞ ¼ jf ðxiÞ � yij: ð3Þ

� ‘2-norm loss. This loss puts very small weight on small residu-
als, but strong weight on large residuals. This penalty results
more modest residuals but relatively less larger ones.

Lðf ðxiÞ; yiÞ ¼ ðf ðxiÞ � yiÞ
2
: ð4Þ

� �-insensitive loss. This loss is also known as deadzone-linear
penalty. This loss puts no weight on small residuals. For this
one, many residuals have value ±�, i.e., right at the edge of the
free zone, for which no penalty is applied. When � = 0, it is
equivalent to ‘1-norm loss.

Lðf ðxiÞ; yiÞ ¼ jf ðxiÞ � yij�; ð5Þ

where jnj� is defined as

jnj� ¼
0 if jnj 6 �;
jnj � � otherwise:

�
ð6Þ

It is widely known [37,42] that, tolerating a small error in fit-
ting, i.e. disregarding errors that fall within some �, can improve
performance over zero-tolerance loss function, such as ‘1 and ‘2-
norm loss. This section only utilizes �-insensitive loss. Extensions
to other loss functions will be explored in Section 4.

Another component should be specified is the kernel function k.
Two popular choices of k(�, �) in practice are:

� Polynomial kernel

kðxi;xjÞ ¼ 1þ x0ixj
� �p

; p 2 N: ð7Þ

� Gaussian or Radial Basis Function (RBF) kernel

kðxi;xjÞ ¼ exp �kxi � xjk2
2

2r2

( )
; r2 > 0: ð8Þ
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