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a b s t r a c t

This paper deals with the stochastic control of nonlinear systems in the presence of state and control
constraints, for uncertain discrete-time dynamics in finite dimensional spaces. In the deterministic case,
the viability kernel is known to play a basic role for the analysis of such problems and the design of viable
control feedbacks. In the present paper, we show how a stochastic viability kernel and viable feedbacks
relying on probability (or chance) constraints can be defined and computed by a dynamic programming
equation. An example illustrates most of the assertions.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Risk, vulnerability, safety or precaution constitute major issues
in the management and control of dynamical systems. Regarding
these motivations, the role played by the acceptability constraints
or targets is central, and it has to be articulated with uncertainty
and, in particular, with stochasticity when a probability distribu-
tion is given. The present paper addresses the issue of state and
control constraints in the stochastic context. For the sake of sim-
plicity, we consider noisy control dynamic systems. This is a natu-
ral extension of deterministic control systems,which covers a large
class of situations. Thus we consider the following state equation
as the uncertain dynamic model

x(t + 1) = f (t, x(t), u(t), w(t)),
t = t0, . . . , T − 1, with x(t0) = x0 (1)

where x(t) ∈ X = Rn represents the system state vector at time
t , x0 ∈ X is the initial condition at initial time t0, u(t) ∈ U = Rp

represents decision or control vector while w(t) ∈ W = Rq stands
for the uncertain variable, or disturbance, or noise.

The admissibility of decisions and states is first restricted by a
non empty subset B(t, x) of admissible controls in U for all (t, x):

u(t) ∈ B(t, x(t)) ⊂ U. (2)
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Similarly, the relevant states of the system are limited by a non
empty subset A(t, w(t)) of the state space X possibly uncertain for
all t ,

x(t) ∈ A(t, w(t)) ⊂ X, (3)

and a target

x(T ) ∈ A(T , w(T )) ⊂ X. (4)

We assume that

w(t) ∈ S(t) ⊂ W, (5)

so that the sequences

w(·) := (w(t0), w(t0 + 1), . . . , w(T − 1), w(T )) (6)

belonging to

� := S(t0) × · · · × S(T ) ⊂ WT+1−t0 (7)

capture the idea of possible scenarios for the problem. A scenario is
an uncertainty trajectory.

These control, state or target constraints may reduce the rel-
evant paths of the system (1). Such a feasibility issue can be ad-
dressed in a robust or stochastic framework. Here we focus on
the stochastic case assuming that the domain of scenarios � is
equipped with some probability P. In this probabilistic setting,
one can relax the constraint requirements (2)–(4) by satisfying the
state constraints along time with a given confidence level β

P(w(·) ∈ � | x(t) ∈ A(t, w(t)) for t = t0, . . . , T ) ≥ β (8)
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by appropriate controls satisfying (2). Such probabilistic con-
straints are often called chance constraints in the stochastic litera-
ture as in [1,2]. We shall give proper mathematical content to the
above formula in the following section. Concentrating now onmo-
tivation, the idea of stochastic viability is basically to require the
respect of the constraints at a given confidence level β (say 90%,
99%). It implicitly assumes that some extreme events make irrele-
vant the robust approach [3] that is closely related to stochasticity
with a confidence level 100%.

The problems of dynamic control under constraints usually re-
fer to viability [4] or invariance [5,6] framework. Basically, such an
approach focuses on inter-temporal feasible paths. From themath-
ematical viewpoint, most of viability and weak invariance results
are addressed in the continuous time case. However, some math-
ematical works deal with the discrete-time case. This includes the
study of numerical schemes for the approximation of the viability
problems of the continuous dynamics as in [4,7]. Important contri-
butions for discrete-time case are also captured by the study of the
positivity for linear systems as in [8], or by the hybrid control as in
[9,6] or [10]. Other references may be found in the control theory
literature, such as [11,12] and the survey paper [13]. A large study
focusing on the discrete-time case is also provided in [14].

Viability is defined as the ability to choose, at each time step, a
control such that the systemconfiguration remains admissible. The
viability kernel associated with the dynamics and the constraints
plays amajor role regarding such issues. It is the set of initial states
x0 fromwhich starts an acceptable solution. For a decisionmaker or
control designer, knowing the viability kernel has practical interest
since it describes the states from which controls can be found that
maintain the system in a desirable configuration forever. However,
computing this kernel is not an easy task in general. Of major
interest is the fact that a dynamic programming equation underlies
the computation or approximation of viability kernels as pointed
out in [4,14].

The present paper aims at expanding viability concepts and re-
sults in the stochastic case for discrete-time systems. In particular,
we adapt the notions of viability kernel and viable controls in the
probabilistic or chance constraint framework. Mathematical mate-
rials of stochastic viability can be found in [15–17] but they rather
focus on the continuous time case and cope with constraints satis-
fied almost surely. We here provide a dynamic programming and
Bellman perspective for the probabilistic framework.

The paper is organized as follows. Section 2 is devoted to
the statement of the probabilistic viability problem. Then, Sec-
tion 3 exhibits the dynamic programming structure underlying
such stochastic viability. An example is presented in Section 4 to
illustrate some of the main findings.

2. The stochastic viability problem

Here we address the issue of state constraints in the probabilis-
tic sense. This is basically related to risk assessment and manage-
ment. This requires some specific tools inspired from the viability
and invariance approach known for the certain case. In particular,
within the probabilistic framework, we adapt the notions of viabil-
ity kernel and viable controls.

2.1. Probabilistic assumptions and expected value

Probabilistic assumptions on the uncertaintyw(·) ∈ � are now
added, providing a stochastic nature to the problem. Mathemat-
ically speaking, we suppose that the domain of scenarios � ⊂

WT+1
= Rq

×· · ·×Rq is equippedwith a σ -field1 F and a probabil-
ityP: thus, (�, F , P) constitutes a probability space. The sequences

1 For instance, F is the trace of � on the usual borelian σ -field F =
T

t=t0
B(Rq).

w(·) = (w(0), w(1), . . . , w(T − 1), w(T )) ∈ �

now become the primitive random variables.
Hereafter, we shall assume that the random process w(·) is

independent and identically distributed (i.i.d.) under probability P.
In other words, we suppose that the probability is the product P =T

t=t0
µ of a common marginal distribution µ. The expectation

operator E is defined on the set of measurable and integrable
functions by

E[g] = EP [g (w(·))]

=

∫
�

g(w(t0), . . . , w(T ))dµ(w(t0)) · · · dµ(w(T )),

and we have that

EP [g (w(t))] = Eµ [g (w(t))] .

2.2. Controls and feedback strategies

It is well known that control issues in the uncertain case are
much more complicated than in the deterministic case. In the un-
certain context,wemust drop the idea that the knowledge of open-
loop decisions u(·) = (u(t0), . . . , u(T−1)) induces one single path
of sequential states x(·) = (x(t0), . . . , x(T )). Open-loop controls
u(t) depending only upon time t are no longer relevant, contrarily
to closed loop or feedback controls u(t, x(t)) which display more
adaptive properties by taking into account the uncertain state evo-
lution x(t). In the stochastic setting, all the objects considered will
be implicitly equipped with appropriate measurability properties.
Thuswe define a feedback as an element of the set of allmeasurable
functions from the time-state pairs towards the controls:

U := {u : (t, x) ∈ {t0, . . . , T − 1}
× X → u(t, x) ∈ U, u measurable}. (9)

The control constraint case restricts feedbacks to admissible
feedbacks accounting for control constraints (2) as follows

Uad
= {u ∈ U | u(t, x) ∈ B(t, x),

∀(t, x) ∈ {t0, . . . , T − 1} × X} . (10)

Let us mention that, in the stochastic context, a feedback de-
cision is also termed a pure Markovian strategy. Markovian means
that the current state contains all the sufficient information of past
system evolution to determine the statistical distribution of future
states. Thus, only current state x(t) is needed in the feedback loop
among the whole sequence of past states x(t0), . . . , x(t).

At this stage, we need to introduce some notations which will
appear quite useful in what follows: the state map and the con-
trol map. Given a feedback u ∈ U, a scenario w(·) ∈ � and an
initial state x0 at time t0 ∈ {t0, . . . , T − 1}, the solution state
xf [t0, x0, u, w(·)] is the state path x(·) = (x(t0), x(t0 + 1), . . . ,
x(T )) solution of the dynamics

x(t + 1) = f (t, x(t), u(t, x(t)), w(t)), t = t0, . . . , T − 1

starting from the initial condition x(t0) = x0 at time t0 and as-
sociated with feedback control u and scenario w(·). The solution
control uf [t0, x0, u, w(·)] is the associated decision path u(·) =

(u(t0), u(t0 + 1), . . . , u(T − 1)) where u(t) = u(t, x(t)).

2.3. The stochastic viability kernel and viable feedbacks

The viability kernel plays amajor role in the viability analysis. In
the deterministic case, it is the set of initial states x0 such that the
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