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Abstract

This paper discusses application and results of global sensitivity analysis techniques to probabilistic safety assessment (PSA) models, and

their comparison to importance measures. This comparison allows one to understand whether PSA elements that are important to the risk, as

revealed by importance measures, are also important contributors to the model uncertainty, as revealed by global sensitivity analysis. We

show that, due to epistemic dependence, uncertainty and global sensitivity analysis of PSA models must be performed at the parameter level.

A difficulty arises, since standard codes produce the calculations at the basic event level. We discuss both the indirect comparison through

importance measures computed for basic events, and the direct comparison performed using the differential importance measure and the

Fussell–Vesely importance at the parameter level. Results are discussed for the large LLOCA sequence of the advanced test reactor PSA.

q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Probabilistic safety assessment (PSA) is a methodology

that produces numerical estimates for a number of risk

metrics for complex technological systems. The core

damage frequency (CDF) and the large early release

frequency (LERF) are the common risk metrics of interest

in nuclear power plants (NPP).

The generic risk metric can be written as a function of the

frequencies of the initiating events, i.e. events that disturb

the normal operation of the facility such as a power

excursion and the conditional probabilities of the failure

modes of structures, systems and components (SSCs)

R ¼ hðf IE
; qÞ ð1Þ

where f IE ¼ {f IE
i }; i ¼ 1;…;Z; is the set of the frequencies

of initiating events with Z the total number of initiating

events included in the PSA model and q ¼ {qj}; j ¼

1;…;N; is the set of the basic event probabilities, with N, the

total number of basic events in the PSA. More synthetically,

qj ¼ pðBEjÞ; j ¼ 1;…;N:

Once the logical expression of the minimal cut sets is

expanded and the rare event approximation is considered, R

is linear in f IE and q [4].

Since Eq. (1) relates the risk metric to the basic events,

we refer to Eq. (1) as the basic event representation or basic

event level of the PSA model.

A ‘point estimate’ of the risk metric R can be produced

by Eq. (1) using point (‘best estimate’) values of the inputs

(f IE and q in this case). We write

R0ðf0Þ ¼ hðq0; f 0Þ ð2Þ

where we have introduced the symbol f to denote the

generic qj or fi ðf ¼ {qj; fi}; j ¼ 1; 2;…;N; i ¼ 1; 2;…;ZÞ:

One refers to R0 as to the nominal value or the risk metric,

or, shortly, the nominal risk.

The risk metric is often expressed as a function of more

fundamental parameters. For example, the failure time of a

component is usually assumed to follow an exponential

distribution with a failure rate l. In the case the component

is renewed every t units of time, then, its average (over

time) unavailability is [2]:

qj ¼ pðBEjÞ ¼
ljt

2
ð3Þ

However, more rigorously, we acknowledge that these

inputs are uncertain and express this uncertainty using
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state-of-knowledge or epistemic probability distributions

(Kaplan and Garrick, 1981) [1,12–15,17]. The propa-

gation of these distributions produces the epistemic

distribution of R. Epistemic or state of knowledge

dependencies and conditional dependencies are not

captured by the basic event expression of R. Eq. (1)

needs to be replaced by its parametric representation, if

we want to take them into account [4]. We denote the

expression of the risk metric as a function of the PSA

model parameters as:

RðxÞ ¼ gðx1; x2;…; xnÞ ð4Þ

The importance of a PSA element with respect to the

risk is found applying PSA importance measures.

Importance measures traditionally used are the Fussell–

Vesely (FV), risk achievement worth (RAW) [8,26]

These measures show shortcomings when applied to set

of basic events (Eq. (1)). Furthermore, RAW cannot be

used to compute the importance of parameters (Eq. (4))

[4]. The differential importance measure (DIM) proposed

recently by Borgonovo and Apostolakis [4] remedies this

situation. In addition, DIM is defined for both Eqs. (1)

and (4), providing measures of the risk-significance of

both basic events and parameters (Section 2).

PSA importance measures (FV, RAW and DIM) are

local measures, i.e. they deal with a point value of R and

of the parameters. However, to assess the relevance of a

parameter with respect to the model uncertainty, the

entire epistemic uncertainty in R and in the parameters

should be taken into account. Global sensitivity analysis

(GSA) techniques are the appropriate techniques for this

task [21]. We have investigated several GSA techniques

in this work. In this paper we focus on the results

and performance of global sensitivity indices computed

via extended fourier amplitude sensitivity test (FAST)

[12,22,24].

We show that, due to epistemic dependencies, the

appropriate level to perform GSA is the parameter level of

the PSA model. Thus, the comparison of importance

measures and GSA technique results is not direct, since

importance measures are produced at the basic event level

by most standard PSA software tools, while GSA techniques

are computed at the parameter level. We propose both an

indirect approach for the comparison of FV and RAW

results at the basic event level to GSA results, and a direct

comparison that makes use of DIM and FV at the parameter

level as measures of risk. We provide quantitative results

through the use of the large loss of coolant accident

(LLOCA) PSA model of the advanced test reactor (ATR)

[10].

In Section 2, we present DIM, FV, and RAW and discuss

their properties. In Section 3, we introduce variance-based

techniques and the definition of model coefficient of

determination. In Section 4, we discuss dependencies

caused by epistemic uncertainty. In Section 5, we present

the application and results of GSA and importance

measures, and their comparison for the large LLOCA

sequence of the ATR PSA model. In Section 6 a number of

conclusions is offered.

2. PSA importance measures

In this section, we discuss the definitions and properties

at both the parameter and basic event level of DIM, FV and

RAW.

DIM is defined for both PSA model parameters and basic

events. The definition of DIM for parameters is as follows

[4]:

DIMx1
ðx0; dxÞ ¼

dRxi

dR

����
x0

¼

›R

›xi

����
x0

dxi

X
j

›R

›xj

������
x0

dxj

ð5Þ

where x0 ¼ {x10
; x20

;…; xn0
} is the set of the parameters in

Eq. (4) fixed at a reference point value, dx ¼ {dx1; dx2;…;

dxn} is the change vector,

dRxi
¼

›R

›xi

����
x0

dxi

is the differential of R with respect to xi;

dR ¼
›R

›x1

����
x0

dx1 þ
›R

›x2

����
x0

dx2 þ · · · þ
›R

›xn

����
x0

dxn

is the total differential of R.

DIM (Eq. (5)) is the fraction of the local change in R that

is due to a change in parameter xi:

The definition of DIM at the basic event level is

DIMEj
ðf0; dfÞ ¼

dREj

dR
¼

›R

›fj

�����
f0

dfj

X
k

›R

›fk

�����
f0

dfk

ð6Þ

where Ej denotes the generic basic event or initiating event,

fj denotes the corresponding probability (if Ej is a basic

event) or frequency (if Ej is an initiating event), dREj

denotes the differential of R in fj; dR is the total differential

of in R. Eq. (6) states that basic events that cause the greater

change in the risk metric have the highest DIM. We note

that Eq. (6) is based on the expression of R as function of the

basic events (Eq. (1)), while the definition in Eq. (5) applies

to the expression of the risk metric as a function of the

parameters (Eq. (4)).

As it appears from Eqs. (5) and (6), DIM depends on both

the parameter reference values and the vector of changes in

the parameters. DIM can be computed under different

assumptions regarding the way parameters or basic events

are affected by the changes [4]. The following assumptions
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