
Interactive segmentation of non-star-shaped contours by
dynamic programming

Xiaoyi Jiang �, Andree Große, Kai Rothaus

Department of Mathematics and Computer Science, University of Münster, Einsteinstrasse 62, D-48149 Münster, Germany

a r t i c l e i n f o

Available online 22 March 2011

Keywords:

Contour detection

Non-convex

Non-star-shaped

Shortest path

Dynamic programming

a b s t r a c t

In this paper we present the RACK algorithm for the detection of optimal non-star-shaped contours in images.

It is based on the combination of a user-driven image transformation and dynamic programming. The

fundamental idea is to interactively specify and edit the general shape of the desired object by using a rack.

This rack is used to model the image as a directed acyclic weighted graph that contains a path corresponding

to the expected contour. In this graph, the shortest path with respect to an adequate cost function can be

calculated efficiently via dynamic programming. The experimental results indicate the algorithm’s ability of

combining an acceptable amount of user interaction with generally good segmentation results.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic programming (DP) is a popular technique for contour
segmentation due to its elegance and guarantee of optimality [1–3].
However, the contours that can be handled by such techniques are
limited to star-shaped only. Some approaches have been proposed
to deal with more complex shapes [3–5] by means of increased
human interaction or additional prior information. In this work we
address the task with a new approach that will be called the RACK

algorithm. The idea is to specify and edit the general shape of the
desired object by using a rack; see Fig. 7. This rack is used to model
the image as a directed acyclic graph (DAG) that contains a path
corresponding to the expected contour. With the image’s edge
strength or whatever other suitable measures as graph weights, an
optimal contour can be defined as the shortest path in the DAG with
respect to some cost function, which can be globally minimized via
dynamic programming.

Our approach is in line with interactive image segmentation.
Fully automated segmentation is known to be an ill-posed problem
due to the fact that there is neither a clear definition nor an
objective goodness measure of a semantic segment. The user
intention is manifold and depends on applications. In order to
perform a semantically meaningful segmentation, it is thus helpful
to take a priori information about the objects into account. Inter-
active segmentation algorithms provide a solution by invoking
the aid of a human operator to supply the high-level information
needed to detect and extract semantic objects through a series of
interactions. For instance, the user may mark (small) areas of the
image as object or background and the algorithm updates the

segmentation using the new information. By iteratively providing
more interactions the user can refine the segmentation. The goal of
interactive segmentation is thus to provide a means of extracting
semantic objects from an image quickly and accurately.

The early approach of seeded region growing [6] is a simple
and computationally inexpensive technique for interactive segmenta-
tion based on a set of seed points. The more sophisticated approach
from [7] uses the seed pixels to estimate the labels of unlabeled
pixels by learning on probabilistic hypergraphs. Intelligent scissors
[8] allows a user to choose a minimum cost contour by roughly
tracing the object’s boundary with the mouse. Active contours or
snakes [9] evolutionally improve a manually specified initial contour.
The interactive graph cut algorithm [10] formulates the interactive
segmentation problem within a MAP-MRF framework, subsequently
determining a globally optimal solution using a fast mincut/max-flow
algorithm. Two further variants of this category are the GrabCut
algorithm [11] and the lazy snapping algorithm [12]. The work [13]
extends the classical region growing to a maximal similarity
based interactive segmentation. A linear programming approach is
presented in [14]. Recently, a comparative evaluation of four inter-
active segmentation algorithms is reported in [15]. While these
works are devoted to general object extraction from photographs
and natural scenes, there are also application-specific demands and
related developments. For instance, interactive segmentation meth-
ods are indispensable for biomedical image analysis [16,17].

The remainder of this work is organized as follows. We discuss
related works on DP-based contour detection in Section 2. In
Section 3, we describe our algorithm according to the three steps
shown in Fig. 1. The image is first modeled as an undirected graph
and then turned into a DAG. As a third step, the shortest path is
calculated in this DAG, which represents an optimal contour. The
key issue of transforming the undirected graph into a DAG guided
by a user-specified rack is tackled in Section 4. Experimental

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/pr

Pattern Recognition

0031-3203/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.patcog.2011.03.010

� Corresponding author.

E-mail address: xjiang@uni-muenster.de (X. Jiang).

Pattern Recognition 44 (2011) 2008–2016

www.elsevier.com/locate/pr
dx.doi.org/10.1016/j.patcog.2011.03.010
mailto:xjiang@uni-muenster.de
dx.doi.org/10.1016/j.patcog.2011.03.010

results are shown in Section 5. Finally, we conclude with a
discussion in Section 6. This paper is an extended version of the
conference version [18] and contains more algorithmic details
and experimental validation.

2. Dynamic programming for contour detection

The principle of dynamic programming was introduced by
Bellman [19]. Dynamic programming is a very efficient way of
finding an optimal path in a matrix of weights with an unknown
start point in the first column and an unknown end point in the
last column [20–22]. Among all possible paths from left to right
the optimal path maximizes (or minimizes) the sum of weights of
all elements on the path. If the matrix represents the edge
magnitude, then the optimal path found by the dynamic pro-
gramming simply means the best contour from left to right,
which maximizes the sum of edge magnitudes. Let S denote the
weight matrix. The optimal path is computed by means of a
cumulative weight matrix C in a column-row manner. The first
column of C is initialized by the corresponding values from S.
Starting from the second column, the cumulative weight at
position (i,j) is computed for each column j as

Cði,jÞ ¼ Sði,jÞþ max
nANði,jÞ

½CðnÞþTðn,ði,jÞÞ�

where N(i,j) is the set of possible predecessors of (i,j) in the
previous column j�1. In the case of 8-neighborhood, N(i,j) is
usually set to be {(i�1,j�1), (i,j�1), (iþ1,j�1)}. T(n, (i,j)) repre-
sents the transition weight from the predecessor n to the current
position (i,j). In addition to computing C(i,j), a pointer is set to the
predecessor n that achieves the maximum among all predecessors
in N(i,j). To determine the optimal path we follow the pointers
from the last column backwards to the first column, starting from
the position in the last column of C with the maximal value.

The standard dynamic programming can be easily extended to
handle closed contours. The fundamental idea is to select a point
p in the interior of the contour. Then, a polar transformation with
p being the central point brings the original image into a matrix,
in which a closed contour becomes a contour from left to right.
The optimal path computed in this polar space, however, does not
guarantee a closed contour in the original image space. Several
exact and approximate approaches have been proposed [23,24]
to enforce a circular solution. The principle of DP-based contour
detection has also been extended to deal with simultaneous
finding of multiple contours [1,2].

The DP-based technique has several advantages that make it
attractive for object detection. First, the calculation of an optimal
contour can be efficiently implemented. Furthermore, the calculated
contour will represent a global optimum. This is a major difference
to algorithms like active contours and makes the algorithm quite
stable against local perturbations or gaps in the contour.

The main limitation of DP-based approaches is the restriction
to star-shaped contours including convex contours as a special
case only. A star-shaped contour is characterized by the existence
of a point p such that for each point q of the contour the segment
pq lies entirely within the contour. The set of all points p with the

described property is called the contour’s kernel. Theoretically,
any point from the kernel may be used as the origin of the polar
transformation. But practically, more centered kernel points tend
to provide better detection results.

Several suggestions have been made toward dealing with
shapes that are more complex than star-shaped. The segmenta-
tion tool Corridor Scissors [25] allows the user to mark a coarse
circular corridor area around the object. Then, the algorithm
searches for a shortest circular path inside the corridor. Two
rather heuristic techniques are proposed in [3]. In one of them, a
dual band of elliptic shape needs to be carefully placed so that the
donut shape within the band can be transformed into a rectan-
gular image in the polar space. In [4] a basic contour is first
marked manually. Normals to this contour are then constructed.
The length of the normals restricts the search space. The pixels
along the normals are then transferred to polar coordinate
system. However, the problem with this method is that it can
only be applied to objects that are somewhat convex in nature. At
places where the object has sharp corners or pointed peaks, the
normals will cross each other and thus the contour finding may
fail. In order to solve this problem, the method from [5] restricts
the search space to a dual band of predefined width. The inner
and outer boundaries of the search space are interlinked with
optimally determined straight lines that are guaranteed not to
cross each other and thus allow to deal with complex shapes that
cannot be processed by considering the normals only.

3. Rack-based contour detection by dynamic programming

Our approach substantially differs from the previous ones. In
our case the user is required to interactively specify a rack (a kind
of skeleton [26]) of the expected shape. Then, we adaptively
construct a DAG based on the rack and solve the contour
detection problem by calculating the shortest path in this graph
by means of dynamic programming. An outline of our RACKalgo-
rithm can be found in Fig. 1. We start with the fundamental graph
representation of an image (Section 3.1). Then, the adaptive DAG
construction is described in Section 3.2. We present how to
calculate the shortest path in the constructed DAG in Section
3.3. Finally, the computational complexity of the rack-based
contour detection algorithm is discussed in Section 3.4.

3.1. Graph representation of an image

Fig. 2 illustrates how an image of size M�N is modeled by a
grid graph of size ðMþ1Þ � ðNþ1Þ. Each vertex represents a
boundary point between adjacent pixels. A contour in the image
is expressed by a path in this graph.

A weight w is assigned to each graph edge indicating the image’s
edge strength at the corresponding position in the image or
whatever measure useful for contour detection. We assume that
the weight is normalized, i.e. w : E-½0,1�. Fig. 2(c) illustrates the
weight for each edge as grayscale highlights, where black indicates
high edge strength. This grid graph therefore is a weighted undir-
ected graph G¼(V,E,w). We assume that a weight of 0 corresponds

Represent image
by a graph

Turn graph
into DAG

Calculate
shortest path

Link
image to

graph

Calculate
edge

strength

Image Contour
Define
cost

function

Dynamic
program-

ming

Define
vertex order

Fig. 1. Outline of the RACK algorithm.

X. Jiang et al. / Pattern Recognition 44 (2011) 2008–2016 2009

http://isiarticles.com/article/25726

