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a b s t r a c t

In this paper, we present a dynamic programming (DP) algorithm for the multi-objective
0–1 knapsack problem (MKP) by combining two state reduction techniques. One generates
a backward reduced-state DP space (BRDS) by discarding some states systematically
and the other reduces further the number of states to be calculated in the BRDS using
a property governing the objective relations between states. We derive the condition
under which the BRDS is effective to the MKP based on the analysis of solution time and
memory requirements. To the authors’ knowledge, the BRDS is applied for the first time
for developing a DP algorithm. The numerical results obtained with different types of bi-
objective instances show that the algorithm can find the Pareto frontier faster than the
benchmark algorithm for the large size instances, for three of the four types of instances
conducted in the computational experiments. The larger the size of the problem, the larger
improvement over the benchmark algorithm. Also, the algorithm is more efficient for the
harder types of bi-objective instances as compared with the benchmark algorithm.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The 0–1 knapsack problem (KP) is one of the most intensively studied NP-hard combinatorial optimization problems [1].
The multi-objective 0–1 KP (MKP) is a generalization and a natural extension of the single objective 0–1 KP by considering
two or more objectives. The MKPs are frequently encountered in practice since multiple conflicting objectives are more
appropriate to model real-world situations. Examples can be found in capital budgeting [2], selection of transportation
investment alternatives [3], relocation issues arising in nature conservation, biology [4], selection of building renovation
methods [5], environmental investments [6], and facility location [7].

The MKP is described below. Given n items and r profit objectives for each item, with the kth profit objective ckj (k =
1, . . . , r) and weight wj for item j (j = 1, . . . , n) and a knapsack of capacity W , the problem is to select a subset of items
whose total weight does not exceed W and whose total profit objectives are maximized in the Pareto sense. The MKP can
be formulated as the following multi-objective integer linear programming model:

‘‘max’’


n−

j=1

c1j xj, . . . . ,

n−
j=1

crj xj


(1)
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subject to
n−

j=1

wjxj ≤ W , (2)

xj ∈ {0, 1}, j = 1, . . . , n (3)
where xj are decision variables indicating whether the jth item is selected to place in the knapsack or not. Here, we follow
the common assumptions in most literature: W , wj, ckj (j = 1, . . . , n; k = 1, . . . , r) are positive integers. To avoid trivial
solutions, it is assumed that wj ≤ W (j = 1, . . . , n) and

∑n
j=1 wj > W .

For the single objective 0–1 KP, decades of algorithmic improvements havemade it possible to solve in a reasonable time
limit nearly all standard instances from the literature. But some types of instances are still hard to solve because of its NP-
hard nature. Ref. [8] pointed out that the strongly correlated instances (weight coefficients andprofit coefficients are strongly
correlated) and some other types of instances challenged the existing algorithms. Ref. [9] compared the solution times of
all recent algorithms using classical and new benchmark test instances. The new benchmark set includes instances with
large (≥105) or moderate (103) weight coefficients and all the algorithms based on currently used upper bound techniques
showed bad performance on these instances. This study pointed out that dynamic programming (DP) is one of the best
approaches for solving the hard types of the 0–1 KP.

In themulti-objective optimization context, the solution process consists of finding the Pareto frontier (PF)with a number
of non-dominated objective vectors in the objective space which corresponds to efficient solutions in the decision space.
Hence, compared with the single objective KP, the MKP poses more challenges. On the one hand, there are intractable
instances of multi-objective combinatorial optimization problems, for which the number of efficient solutions is not
polynomial in the size of their instances [10]. On the other hand, for most multi-objective combinatorial optimization
problems, deciding whether a given objective vector is dominated or not is an NP-hard problem [11], even if the underlying
single objective version can be solved in polynomial time.

However, these difficulties do not prevent the research effort from developing efficient algorithms able to find the PF
quickly from the practical viewpoints. In the following, we review the main accurate approaches for solving the MKP. Ref.
[12] presented the theoretical DP framework for the multi-objective integer KP. Ref. [13] implemented an exact algorithm
for the bi-objective 0–1KP (BKP) by exploring developments for themulti-objective linear programming problem. The above
two research contributions can be considered as theoretical developments because the authors did not present extensive
experimental results. Other researchers have developed specific algorithms based on extensive numerical tests. Most of this
research work focused on calculating the PF with the exception of [14]. Ref. [14] presented a generic labeling algorithm,
which calculated both the PF in the objective space and the corresponding efficient solutions in the decision space, for the
multi-objective integer KP. Ref. [15] presented a two-phase branch and bound algorithm for the BKP. Ref. [16] presented a
labeling algorithm for the BKP by transforming a KP into a shortest path problem. It is in essence a DP algorithm. Ref. [17]
studied a dominance based on the DP (DDP) algorithm for the MKP and numerical tests were conducted for the BKP and
tri-objective KP. Ref. [18] applied bound sets in the DP algorithm for the MKP and numerical tests were conducted for the
BKP. Both [17,18] are hybrid DP algorithms.

Similar to the single-objective 0–1 KP, DP algorithms [16–18] are among the best approaches to solve the MKP. Ref. [16]
attempted to reduce the number of states to be calculated by generating a forward reduced-state DP space (FRDS) but
the computational effort for the final stage is very heavy. The DP space consists of all of the states and related transitions
between states in the DP process. Ref. [17] relied on several dominance relations to discard partial solutions that cannot
lead to new non-dominated objective vectors and Ref. [18] applied elaborate bounding techniques to reduce the number
of states to handle in the DP process. This can significantly reduce the computational effort for the algorithm. However,
applying dominance relations and bounding techniques still needs a heavy computational effort.

In this paper, we focus our attention on finding the PF for the MKP, i.e., the algorithm is designed to address the multi-
objective case. But our implementation and numerical tests focus on the bi-objective case. We follow DP approaches for
dealing with the MKP and use a backward reduced-state DP space (BRDS) to avoid heavy computational effort for the FRDS
in the final stage. The major contributions of the paper are summarized as follows. First, we identify a BRDS by exploring
the network of the basic sequential DP (BDP) process. Second, we derive the condition under which the BRDS is effective to
the MKP based on the analysis of its impact on the solution time and memory requirements. Finally, we develop a new DP
algorithm by applying the BRDS in conjunction with a property governing the objective relations between states, which can
help to reduce further the number of states to be calculated in the BRDS. To our knowledge, it is the first time that the BRDS
is used in the DP algorithm.

Some states, which have been discarded in our approach, may coincide with those discarded by the dominance relations
in [17] or by bounding techniques [18]. However, the techniques used for discarding the states are completely different.
Moreover, our techniques are especially efficient for the hard types of KP instances as comparedwith [17,18]. The hard types
of instances include conflicting instances where the profit objectives are negatively correlated. The hardest instances are
those where conflicting objectives are positively correlated with the weight coefficients. Usually the cardinality of the PF for
these instances increases rapidly as the problem size increases. Very few techniques can handle these instances efficiently.

The paper is broken down as follows. In Section 2, we give the network representation of themulti-objective BDP process
to provide the foundation for generating the BRDS. In Section 3, we outline the main components of a two state reduction
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