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Abstract

In this paper we employ a Monte Carlo method to compute the first-order, differential sensitivity indexes of the basic events characterizing

the reliability behavior of the containment spray injection system of a nuclear power plant. An exemplification is provided as to how the

obtained sensitivity indexes can be used to drive improvements in the system design and operation.
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1. Introduction

In the nuclear field one of the principal activities for

applications of risk-informed regulatory processes is the

ranking of structures, systems and components with respect

to their safety-significance [1,2]. With reference to safety

systems in particular, this requires an analysis of how the

safety performance is affected by the stochastic behavior of

the components constituting the system: importance

measures [1–3] and sensitivity indexes [4] are often used

for this scope [3]. When realistic issues of system operation

are included, such as components’ ageing and maintenance,

load-sharing, etc. and when uncertainty in the components

parameters’ values exist, the computation of these measures

and indexes is not straightforward [5].

In this paper we illustrate a Monte Carlo simulation

method which allows to compute first-order, differential

sensitivity indexes [6–8]. The details of the method are

illustrated and a realistic case of a nuclear safety system, the

Containment Spray Injection System (CSIS) [7] is pre-

sented. The sensitivity indexes obtained are used to suggest

changes in the system design and operation.

In the application presented, the Monte Carlo

calculations are standard analog ones (no biasing).

The introduction of biasing techniques can be easily

accommodated in the method to reduce the variance of

the Monte Carlo estimates. The calculations have been

performed by means of the MARA (Monte Carlo Avail-

ability Reliability Analysis) code, developed by the authors

at the Department of Nuclear Engineering of the Poly-

technic of Milan.

In Section 2, we present the Monte Carlo method for the

computation of first-order, differential sensitivity indexes.

Section 3 contains the results of the application of the

method to the Containment Spray Injection System. In

Section 4, the findings are summarized and some remarks

are given with respect to the method proposed.

2. Monte Carlo simulation of system transport

The stochastic transport of the states of an engineered

system, within a reliability and availability analysis is best

described by a non-linear integral transport equation in the

dependent variable j(t,k) defined below, which can take

into account the various phenomena (single and dependent

failures, repair, ageing, maintenance, etc.) which affect the

system life analysis [6,10]. In practice, since the transport

equation for j(t,k) still lacks of an explicit general analytic

solution, the Monte Carlo simulation method seems to be

the only viable approach suitable for assessing the

functionals of interest under practical, realistic conditions.

At a given time t, the system state, i.e. the configuration

of its NC components, is represented by a point (k,t) in
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the system phase space, where k2Z is an integer index

which codes all the possible system configurations

(j1; j2;.; jNC
), with ji being an integer which codes the

state of the ith component. The functionals to be estimated

are of the kind:

GðtÞ Z
X
k2G

ðt

0
jðt; kÞRkðt; tÞdt t 2½0;TM� (1)

where j(t,k) is the ingoing collision density, i.e. the

probability density of entering state k at time t, G is the set

of possible system states which contribute to the function of

interest Rk(t,t) and TM is the mission time. For a fixed time

t2[0,TM], the quantity defined by Eq. (1) has the general

form of an expected value of the kind

GðtÞ Z
Ð

f ðxÞgðx; tÞdx t 2½0;TM� (2)

where g(x,t)ZRk(t,t) is a function of the vector of stochastic

variables xhðt; kÞ distributed according to f(x)Zj(t,k)

which is a probability density function with respect to the

continuous variable t and a probability mass function with

respect to the discrete variable k.

The functionals we are interested in are the system

unreliability UR(t) and unavailability UA(t) at time t, so that

G is the subset of all the system failed states and Rk(t,t) is

unity, in the former case of unreliability, or the probability

of the system not exiting before t from the failed state k

entered at t!t, in the latter case of unavailability [6]. Note

that the above expression (1) is quite general, independent

of any particular system model which generates the j(t,k)s.

For the generic time t2[0,TM], the quantity G(t) in Eqs.

(1) and (2) depends on a vector of parameters p (e.g. in our

case of interest the components failure and repair rates, the

maintenance intervals, etc.) which appear in the function

g(x,t,p)ZRk(t,t,p) and in f(x,p)Zj(t,k,p). For simplicity of

notation we re-write (2) by expliciting the dependence

on the parameters p and neglecting the dependence on the

time t

GðpÞ Z
Ð

gðx; pÞf ðx; pÞdx (3)

We now refer to the case of G depending on only a single

parameter p and describe a procedure for the estimate of the

first-order sensitivity of G with respect to a variation of p,

namely dG/dp [6].

Let us set, for brevity

ghgðx; pÞ; g� hgðx; p CDpÞ

f hf ðx; pÞ; f � hf ðx; p CDpÞ (4)

Further, let us indicate with E[$] and E*[$] the expected

values of the argument calculated with the pdfs f and f*,

respectively.

Corresponding to the value pCDp of the parameter, the

definite integral (3) becomes

G� hGðp CDpÞ Z
Ð

gðx; p CDpÞ$f ðx; p CDpÞdx Z E�½g��

(5)

But we also have

G� hGðp CDpÞ Z

ð
gðx; p CDpÞ

f ðx; p CDpÞ

f ðx; pÞ
f ðx; pÞdx

Z E g� f �

f

� �
hE½h� ð6Þ

where we have set

hðx; p;DpÞ Z gðx; p CDpÞ
f ðx; p CDpÞ

f ðx; pÞ
hg� f �

f
(7)

Corresponding to a given Dp (in general such that

Dp/p/1), the Monte Carlo estimate of G* can be done

simultaneously to that of G: for each of N values xi sampled

from the pdf f(x,p), we accumulate the realization g(xi,p),

with the aim of calculating the sample mean GN Z �g as an

estimate of G, and we also accumulate the realization

h(xi,p,Dp) with the aim of calculating the sample mean

G�
N Z �h as an estimate of G*. By so doing, the sample means

GN and G�
N , calculated by using the same sample {xi} are

obviously correlated.

To compute the sensitivity of G with respect to the

variation of the parameter from p to pCDp, let us define

DGN Z G�
N KGN Z

1

N

XN

iZ1

ðhi KgiÞ Z �h K �g (8)

where for brevity, we set

hi hhðxi; p;DpÞ; gi hgðxi; pÞ (9)

The sensitivity vG=vp is estimated as:

E
DGN

Dp

� �
Z

1

Dp
E½hi Kgi� Z

1

Dp
ðG� KGÞz

1

Dp
ð �h K �gÞ

(10)

Nomenclature

CLCS consequence limiting control system

CSIS containment spray injection system

LOCA loss of coolant accident

LWR light water reactor

RWST refuelling water storage tank
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