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Abstract

A procedure for sensitivity analysis used with nonlinear incremental-iterative structural analysis of frames is proposed. The sensitivity of
displacement and stress are considered. The accuracy and efficiency ofthis method are confirmed by several examples. The method can be used
for the second-order analysis and optimization design of framed structures. Practical constraints and considerations for the design of steel frames
are included in the present studies such that the reported findings can be used directly for practical optimal design, which is believed to have not
yet beenstudied or reported in literatures.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Sensitivity analysis (SA)is a useful technique for the
economical design of steel structures where the serviceability
deflection limit state is a consideration. Its role is to evaluate
the changes in structural response due to a variation in design
parameters such as displacements, stresses and frequencies.
Explicitly, the response derivatives are determined with respect
to the design variables of sectional parameters. The sensitivity
of the structural response with respect to these sectional design
variables provides the designer with valuable insight into the
structural response to these design variables.

Sensitivity analysis under linear analysis has been investi-
gated extensively by many researchers. Chan [1] expressed the
displacements of nodes explicitly in design variables using the
principle of virtual work, and proposed a practical method for
the optimization design of tall buildings. Adelman and Haftka
[2] reviewed thegeneral method for calculating the sensitiv-
ity of the static response, eigenvalues and eigenvectors, as
well as the transient response. Their paper focused mainly on
derivatives of the structural responses with respect to sectional
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variables such as cross-sectional area, second moment of area,
and plate thicknesses.

For slender steel space frames, the linear relationships
between the member forces and displacements become invalid
because of the geometricalP − δ and P − ∆ and material
yielding nonlinear effects. As a result, traditional sensitivity
analysis methods for linear structural behavior are not
applicable. The simplest method for obtaining the derivatives of
the structural response with respect to a design variable is the
finite-difference method in both the linear and nonlinear cases.
However, the computational cost is very high and it may be hard
to find the appropriate step size in specific cases.

For nonlinear structural analysis, there are mainly two
different types of solution method, namely the secant iterative
method and the incremental-iterative method. The secant
iterative method has the advantage of simplicity, in using
only the secant stiffness relationships. The incremental-iterative
method uses the tangent stiffness to estimate the displacement
increments and secant stiffness to check the convergence. It
has thegeneral capability of traversing the limit point. A more
specific comparison of the two methods has been made by Chan
and Chui [3].

Ryu and Haririan [4] compared the difference between
the sensitivity analysis procedures for linear and nonlinear
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responses. They further pointed out that the incremental-
iterative approach ismore appropriate for the design sensitivity
analysis of nonlinear structures, as the tangent stiffness matrix
at the final load level can be used directly. This advantage is
also reported in this paper. A general procedure for design
sensitivity analysis with incremental iterative nonlinear analysis
of the structural systems is proposed by Tsay and Arora
[5] in continuum formulations, and both the geometric and
material nonlinearities are included in the derivations. But
their approach appears to be less suitable for the optimization
of nonlinear slender frames, which is the aim of this paper.
These papers laid the foundation for the design optimization
of complex nonlinear structures.

Xu [6] adopted a direct differentiation method (DDM) in the
optimization of geometrical nonlinear and semi-rigid frames
using the secant iteration solution method. Saka and Ulker [7]
and Saka and Kameshki [8] used a pseudo-load technique to
express the displacement by the element stiffness and assuming
the reciprocal relationship between the displacement and the
design variables from which they obtained the sensitivity
of the displacement after differentiation. Pezeshk [9] used a
similar technique, with the potential energy differentiated with
respect to the design variablesto obtain the sensitivity of the
stiffness matrix. The error due to the lack of knowledge of the
geometrical stiffness matrix will increase as the nonlinearity
of the structure increases. Zhang [10] derived a sensitivity
analysis method using the commercial software ABAQUS
(5.5), but his method is only suitable for the bar and membrane
elements, in which the element stiffness can be expressed
in a separable form with the design variables, which is not
applicable for beam–column or shell elements. From the
review of optimization technique used in conjunction with
nonlinear structural analysis, a sensitivity analysis method for
thenonlinear framed structure suitable for use with the popular
and robust incremental-iterative solution technique is not yet
available in the literature.

In this paper, a procedure is proposed for sensitivity analysis
designed for use with an incremental-iterative analysis method
of nonlinear frames. As the design is for a serviceability limit
state design with a moderate load factor, only geometrical
nonlinearity is considered. Several examples reported here
confirmed that this proposed procedure is accurate and efficient
for the incremental-iterative type of structural analysis. The
sensitivity computational cost is also noted to be nominal
compared with the whole solution process. The usage of the
proposed sensitivity analysis in practical structural optimization
with the Optimality Criteria method is illustrated by an example
of the optimization of a 15-story braced steel frame.

2. A review of the Newton–Raphson iterative procedure for
nonlinear analysis

The well-known Newton–Raphson iterative method is the
simplest technique for the effective solution of a nonlinear
problem. Although this method cannot traverse the critical point
due to the ill-conditioning of the Jacobian matrix, it is more
appropriate for practical analysis and design before critical

Fig. 1. Newton–Raphson iteration method.

load. Assuminga to be ak-dimensional design variable vector
andU to be the vector of nodal displacements, the equilibrium
equation can be written as,

R(a, U) − F(a) = 0 (1)

in which F(a) is the externally applied equivalent nodal load
and R(a, U) is the internal resistance nodal force.a is the
design variable vector given bya = (a j , j = 1, . . . , n)T. The
Newton–Raphson incremental-iteration equation can be written
as,

∂ R

∂U
(a, tU (i−1))�U (i) = t F(a) − t R(a, tU (i−1)) (2)

in which the left superscriptt corresponds to the load level and
the right superscripti represents the iteration number. Note that
the global tangent stiffness matrix,t K (i−1)

T , is given by,

∂ R

∂U
(a, tU (i−1)) = t K (i−1)

T . (3)

The displacement increment�U (i) can be obtained by
solving Eq. (2). Adding the displacement increment to the
displacement of the last iteration, we obtain,

tU (i) = tU (i−1) + �U (i). (4)

The process from Eqs.(2) (4) continues until convergence,
as illustrated inFig. 1.

From Eq.(2), we can see that the tangent stiffness matrix
should first be formed in the complete iterative process.
The secant relationship should also be used to calculate the
unbalanced forces during iteration, which is the right-hand part
of Eq.(2).

3. Secant and tangent stiffness relationships

The simplest element for obtaining the nonlinear secant and
tangent stiffness relationships is to extend the cubic Hermite
element by including the geometric stiffness within the linear
stiffness matrix to form the tangent stiffness matrix. This
approach has been used by many researchers (see, [11–13]).
This method is quite successful, except for the necessity of
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