Sensitivity analysis by neural networks applied to power systems transient stability

Anna Diva P. Lotufo*, Mara Lúcia M. Lopes, Carlos R. Minussi

Departamento de Engenharia Elétrica, UNESP, Campus de Ilha Solteira, Av. Brasil, 56, 15385-000 Ilha Solteira, SP, Brazil

Received 29 March 2005; received in revised form 26 August 2005; accepted 1 September 2005
Available online 31 July 2006

Abstract

This work presents a procedure for transient stability analysis and preventive control of electric power systems, which is formulated by a multilayer feedforward neural network. The neural network training is realized by using the back-propagation algorithm with fuzzy controller and adaptation of the inclination and translation parameters of the nonlinear function. These procedures provide a faster convergence and more precise results, if compared to the traditional back-propagation algorithm. The adaptation of the training rate is effectuated by using the information of the global error and global error variation. After finishing the training, the neural network is capable of estimating the security margin and the sensitivity analysis. Considering this information, it is possible to develop a method for the realization of the security correction (preventive control) for levels considered appropriate to the system, based on generation reallocation and load shedding. An application for a multimachine power system is presented to illustrate the proposed methodology.

Keywords: Sensitivity analysis; Preventive control; Transient stability; Neural networks; Back-propagation

1. Introduction

Sensitivity analysis [1] is a very important tool to solve several problems present in many areas of human knowledge: engineering, mathematics, physics, economy, medicine, biology, etc., especially when nonlinearities are involved. Therefore, it is possible to infer about the behavior of the system face to parametric variations without the need of solving a problem that involves great complexity, described by a set of nonlinear differential and algebraic equations [3]. The comportamental conclusions are extracted from the calculation of the derivative function under analysis. This is the problem studied in this work, analysis of transient stability for electric energy systems and specifically the preventive control problem [2].

Transient stability analysis is one of the main studies used in electric power systems (EPS). It is a procedure to evaluate the effects caused by perturbations which origin great deviations on the angles of the synchronous machines, e.g., short-circuit, outage/input of electric equipment. In this case, the model of the system is described by a set of nonlinear algebraic and differential equations [3]. Due to unstable cases and/or equipment capability violations, it is necessary to adopt procedures that can lead the system to a secure state, known as security control. The methods for dynamical preventive control have been proposed recently and the publication available in the literature is not abundant, e.g., [2–6].

This work presents a methodology based on neural networks [7–9] to analyze the transient stability – considering short-circuit faults with transmission line outages – and, principally to provide the sensitivity analysis of EPS, that represent the necessary instruments for implementing the preventive control. Neural networks are important resources to deal with the preventive control problem, due to the training be an off-line activity and the analysis be concluded with minimal computational effort (basically the calculus with the input and output of the neural network), being useful for applications in real time. It is important to emphasize that the sensitivity calculus is carried out without computational effort. On the other hand, to obtain the sensitivity model by conventional procedures, require a large quantity of complex matrix calculation, spending much time, principally for applications in huge systems.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Sensitivity analysis; Preventive control; Transient stability; Neural networks; Back-propagation
The neural network used is a feedforward multilayer with training by back-propagation (BP) algorithm [10]. The BP algorithm training rate is adjusted by a fuzzy controller [11–14], which monitors the global error and the global error variation during the training as well the adaptive process [15,16]. It is an optimal mechanism that reduces the convergence time and improves the precision of the results, as observed in ref. [15]. The variables used on the training are causal variables of a problem of transient stability analysis (active and reactive nodal electric power which are the input neural network stimulus) and the security margins (output neural network stimulus) generated using the potential energy boundary surface (PEBS) iterative method [17], microcomputer version. The security margin expressed in the potential energy boundary surface (PEBS) iterative method [4,16], or another procedure that presents a similar result, principally in relation to precision. The total energy related to system (1), is given by [12,17,21]:

\[E(\theta, \omega) = E_c(\omega) + E_p(\theta) \]

where

\[E_c(\omega) = \text{kinetic energy} = \frac{1}{2} \sum_{i \in N} M_i u_i^2; \]

\[E_p(\theta) = \text{potential energy} = -\sum_{i \in N} \int_{\theta_i}^{\theta} P_i(\theta) d\theta. \]

Then, the transient stability for the rth contingency is evaluated by the security margin on the following way [17]:

- if \(M_r \geq 0 \), the system is considered stable, for transient stability;
- if \(M_r < 0 \), the system is considered unstable, for transient stability.

2. System model

Considering an electrical power system composed of ns synchronous machines, the dynamical behavior of the ith machine, related to Center of Angles (CA), is described by the following differential equation (classical model) [12,21]:

\[M_i \ddot{\theta}_i - P_i(\theta) = 0, \quad i \in N \]

where

\[P_i(\theta) = P_m - P_e = \frac{M_i \text{PCOA}}{MT}; \]

\[M_i = 2H_i/\omega_0; \omega_0 \Delta \text{ synchronous speed of the rotor, } 2\pi f_0; H_i \text{ is the inertia constant (s); } f_0 \text{ is the nominal frequency of system (Hz);} \]

\[\theta_i \Delta \text{ rotor angle of ith synchronous machine related to CA (electrical radians); } \delta_i - \delta_0; \delta_i \text{ is the rotor angle of ith synchronous machine in relation to synchronously rotating reference frame (in electrical radians); } \delta_0 \text{ is } \sum_{j \in N} M_j \delta_j; \]

\[P_m \text{ is the mechanical power of input (pu); } P_e \text{ is the electrical power of output (pu); PCOA } \Delta \text{ accelerating power of CA, } \sum_{j \in N} (P_m - P_e)_j; \]

\[\text{MT is } \sum_{j \in N} M_j; N \Delta \text{ index set of synchronous machines that comprises the system, } \{1, 2, \ldots, ns\}; \]

ns is the number of electrical synchronous machines.

3. Transient stability analysis

The transient stability analysis of EPS, considering a contingency of index r, is effectuated using the security margin criterion [12,17,21]:

\[M_r = \frac{E_{\text{crit}} - E_{\text{e}}}{E_{\text{crit}}}, \]

where \(E_{\text{crit}} \) is the total critical energy of the system. \(E_{\text{e}} \) is the total energy of the system evaluated on the instant of the fault elimination (te).

The critical energy \(E_{\text{crit}} \) and the critical time \(t_{\text{crit}} \) is determined by the iterative PEBS method [4,16], or another procedure that presents a similar result, principally in relation to precision.

The total energy related to system (1), is given by [12,17,21]:

\[E(\theta, \omega) = E_c(\omega) + E_p(\theta) \]

Where

\[E_c(\omega) = \text{kinetic energy} = \frac{1}{2} \sum_{i \in N} M_i u_i^2; \]

\[E_p(\theta) = \text{potential energy} = -\sum_{i \in N} \int_{\theta_i}^{\theta} P_i(\theta) d\theta. \]

Then, the transient stability for the rth contingency is evaluated by the security margin on the following way [17]:

- if \(M_r \geq 0 \), the system is considered stable, for transient stability;
- if \(M_r < 0 \), the system is considered unstable, for transient stability.

4. Dynamic preventive control

Considering a list composed of S contingencies, the security margin of the system must satisfy the following relation [4]:

\[M \geq M_{\text{min}} \]

where \(M_{\text{min}} \) is the minimum limit of the security margin of the system \(M_{\text{min}} > 0 \); \(M_{\Delta \text{ min}}(M_r, r = 1, 2, \ldots, S) \)\.

The control actions must cause modifications on the security margins and the following relations must be satisfied [19,4]:

\[M_r = (M_r^0 + \Delta M_r) \geq M_{\text{min}}, \quad r = 1, 2, \ldots, S \]

where \(M_r \) is the security margin referred to the rth contingency.

The necessary changing \(\Delta M_r \) to correct the security margin – in terms of a vector \(X \) – is estimated by the sensitivity theory, of first order, according to [19]:

\[\Delta M_r \cong \left[\frac{\partial M_r}{\partial X} \right]^T \Delta X \]

or

\[\Delta t_{\text{crit}} \cong \left[\frac{\partial t_{\text{crit}}}{\partial X} \right]^T \Delta X \]

where \(\partial M_r/\partial X \) is the sensitivity of the security margin in relation to the vector \(X \); \(\partial t_{\text{crit}}/\partial X \) is the sensitivity of the critical time in relation to the vector \(X \); \(\Delta X \) is the vector corresponding to the changing on the components of vector \(X \).

Equations (9) and (10) represent the sensitivity models considering the interest variables: security margin and critical time, respectively.
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات