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Abstract

This work proposes a Fourier transform method to determine the sensitivities associated with a real coal power plant using a Rankine
cycle. Power demand determines the plant revenue and is supposed to be the most important parameter to be accurately measured, and
this hypothesis is at the center of this study. The results confirm that under full design load, variables such as steam pressure, temperature
and mass flow rate are closely dependent on power demand, though overall thermal efficiency is more sensitive to boiler efficiency. Partial
load simulation shows that the overall thermal efficiency remains strongly dependent on the boiler parameters, but other operational
variables such as steam temperature at the turbine outlet changes its sensitivity according to the load. The results from the Fourier trans-
form method are in good agreement with those determined by classical differential and Monte Carlo methods. However, the Fourier
transform method requires only a single run, providing major savings in computational time as compared to the Monte Carlo method,
a major advantage for analysis of power systems whether operating under full or partial load.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Open energy markets allow energy to be sold in short
intervals, ranging from 5 min segments upwards. In the
case of integrated electricity grids, unexpected outages of
a major power train at a power station can cause supply
shocks and large spikes in spot prices. In a tight competi-
tive energy market, power generation plants must have a
capability to predict demand with high accuracy and cope
with small discrepancies while minimizing standby provi-
sions but still retain enough supply flexibility to manage
(or take advantage of) unanticipated infrastructure fail-
ures. These issues are outside the control of the plant and
have a high level of uncertainty.

The profitability of the plant relies on the difference
between the revenue generated, i.e., the power that is

exported, and the costs of production, i.e., the efficiency
of the plant. To evaluate plant efficiency and, consequently,
gain insight on how best to control costs, measurement of
the plant operation is required. All of these measurements
have some degree of uncertainly, related to instrument
accuracy, calibration, maintenance and so on, and they
also affect the outcome with different degrees of sensitivity.
It is, consequently, important for plant management to
understand and know which measurements are most criti-
cal and how accurate they need to be, since this will influ-
ence maintenance and upgrading decisions and resource
allocations.

The techniques for both uncertainty and sensitivity anal-
ysis are quite similar, and their difference lies principally in
the interpretation of results. The main objective is to calcu-
late the uncertainties of the results due to the uncertainties
of the inputs, which leads to the reliability of the system.
Sensitivity analysis helps to resolve how variation in the
input data affects the output of a system. Both uncertainties
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of measurements and variation in input data may be seen
as biases of mean values, and therefore, the same tech-
niques can be employed for different purposes. Deviations
in sensitivity analysis can be taken as arbitrated rates of
mean values, for example 1% of every mean value of data
input. In this paper, we focus on sensitivity analysis as
applied to routine operation but note that the same kinds
of techniques can be applied to uncertainty analysis applied
to demand variation.

There are a variety of methods that have been developed
to examine the issues of process sensitivity and uncertainty.
Lomas and Epperl [1] suggested that the differential
method is preferable for individual parameters, but the
Monte Carlo Method may be better for global sensitivity
identification. Hamby [2] compared fourteen sensitivity
analysis techniques when applied to a common model (of
dispersion of radiation pollution in the atmosphere) and
concluded that most provide very similar outcomes. Mac-
donald and Stracham [3] also reviewed the application of
these methods to predict uncertainties of thermal models,
including possible sources of uncertainty in simulated
models.

Taking an output Y from a set of equations Y =
f(x1, . . .,xn), where x1, . . .,xn are the input data with known
probability distributions, the probability distribution of Y

can be found by sensitivity methods. The deviation of a
given input datum will be propagated into the solution of
the equation set. Indices relating probability distributions
of input and output data provide useful connections, and
two classical methods are reviewed in this paper.

The differential method (DM) with a global covariance
u2

Y is calculated after the product of each first order partial
derivative of Y with respect to its xi parameters by the cor-
responding deviation ui [1,4]

u2
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Xn
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Two indices were proposed by Hamby [2]. A dimension-
less number called the importance index Ii of a given data i

relates to sensitivity as follows:

I i ¼
oY
oxi
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� �xi
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This index indicates a rate or proportion between devi-
ations, and it takes into account the relative rate of varia-
tion of the input data rather than its absolute deviation. A
sensitivity index Si, is given by

Si ¼
oY
oxi
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Nomenclature

A amplitude
c coefficients of Fourier transform
DM differential method
g(t) Fourier transform
�g sample spectrum mean
h specific enthalpy (kJ/kg)
HP high pressure turbine group
HHP high pressure preheater
I data importance index
IP intermediate pressure turbine group
K number of points K needed to run method
k sample length, isentropic coefficient, integer

number
LP low pressure turbine group
LPP low pressure preheater
_m mass flow rate (kg/s)
MCM Monte Carlo method
n sample length
p confidence
P pressure (kPa), energy
p 0, p00 confidence interval upper and lower limits
S sensitivity index
s specific entropy (kJ/kg K)
S2 sample variance
T temperature (�C or K)
t time (s)
u data bias

u2 data variance
v specific volume (m3/kg)
VY global variance
VYjX local variance of Y given by the individual vari-

ance of x
_W power output (kWe)

X ;�x input data, input data mean value
Y ; �Y output data, output data mean value

Greek symbols
g efficiency
r critical pressure factor (dimensionless)
r2 population variance
v2 chi square distribution coefficient
x frequency (rad/s)
e0 isentropic ratio (dimensionless)
q density (kg/m3)

Subscripts

D design conditions
E electric
i, j individual data, input or inlet
o output or outlet, initial condition
P pump
s sampling
ss isentropic expansion
t turbine
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