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a b s t r a c t

The contribution to the sample mean plot, originally proposed by Sinclair, is revived and further

developed as practical tool for global sensitivity analysis. The potentials of this simple and versatile

graphical tool are discussed. Beyond the qualitative assessment provided by this approach, a statistical

test is proposed for sensitivity analysis. A case study that simulates the transport of radionuclides

through the geosphere from an underground disposal vault containing nuclear waste is considered as a

benchmark. The new approach is tested against a very efficient sensitivity analysis method based on

state dependent parameter meta-modelling.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The explicit acknowledgement of uncertainties when trying to
understand, predict and control the behaviour of natural and
industrial systems is now gaining acceptance and becoming
affordable in practice thanks to the tremendous advances in
computing capabilities. In the standard probabilistic framework,
the uncertain model inputs X ¼ ðX1;X2; . . . ;XkÞ and the resulting
model outputs Y ¼ ðY1;Y2; . . . ;YrÞ are treated as random variables
characterised by probability distribution functions [1]. Random or
quasi-random sampling strategies are adopted in order to select
the model inputs and multiple model evaluations (i.e. Monte Carlo
simulation) are used for the propagation of this uncertainty.
Subsequently, a detailed analysis of the mapping can be carried
out using the input samples and related model realisations.

Sensitivity analysis (SA) is the study of how uncertainty in the
output of the model can be apportioned to different sources of
uncertainty in the model inputs [2]. Ideally uncertainty and
sensitivity analysis should be run in tandem (iterative strategy).
Graphical methods are important tools to support, guide and
interpret the results provided by sensitivity and uncertainty
analysis. While bars, tornado graphs or radar charts can be
particularly useful to communicate importance measures, box-
and-whisker plots are more suitable for the representation of
uncertainty analysis results. Valuable information can also be

presented in condensed form by the so-called cobweb plots [3],
which are able to represent graphically multi-dimensional
distributions with a two-dimensional plot. Flexible conditioning
capabilities facilitate an extensive insight into particular regions
of the mapping and a careful analysis of cobweb plots facilitates
the characterisation of dependence and conditional dependence
between inputs and outputs. However, for the visualisation of the
input–output mapping, the simplest and most widely used plots
are the so-called scatterplots. For a given model input Xi and a
single-valued model output Y , a scatterplot corresponds to a
projection in the ðXi;YÞ plane of the sample points defining the
ðX;YÞ hyper-surface. Among the possible extensions, model inputs
can be plotted against each other with an intensity ramp
corresponding to the values of the model response (matrix of
scatterplots), and different colours corresponding to different
subsets can be used on a single graph (overlaid scatterplots).

Using the classical version of the scatterplot, although a visual
inspection can be seen as an empirical and somehow subjective
appraisal of pattern randomness, scatterplots provide rich
information on mapping, which the other global SA techniques
tend to condense into a few sensitivity indices. It is possible
to visualise the values taken by the model response Y across
the range of Xi. When a pattern can be observed in the scatterplot,
the stronger the pattern, the more important the influence of the
corresponding input on the model output. Some techniques
referred to as grid-based methods can be used to assess the
randomness of the distribution of points across the range divided
into bins. Various statistical tests have been developed in order to
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assess common means (CMNs), common distributions or loca-
tions (CLs) [4], common medians (CMDs) or statistical indepen-
dence (SI) (see [5–7] for recent reviews and comparisons).
However, as emphasised by [7], it is possible that the violation
of statistical test assumptions could be leading to misrankings of
input importance. In addition, there is no universal rule for the
determination of an appropriate division of the range (i.e
definition of the grid).

In the Probabilistic System Assessment Group framework, a
research group established by the Organisation for Economic
Co-operation and Development (OECD) Nuclear Energy Agency
(NEA), Sinclair [8] investigated changes in the mean and in the
variance of various output quantities resulting from finite changes
in the inputs’ uncertainties (e.g., shifts or shrinks of their
distributions). An approach was proposed in order to estimate
the derivative of the expectation of the analysed model response
with respect to the parametrised change of shape. In order to
circumvent the difficulties related to discontinuities in the model
inputs probability distribution functions, the author suggests to fit
a smooth curve to the marginal dependence of the mean of the
output on the selected inputs. Although it is not necessary to
portray this relation graphically for the adopted approach, the
contribution to the sample mean (CSM) plot was recognised as a
general tool for SA.

Even before Sinclair, the same type of curves were used by
social economists as measures of inequality [9]. In that field, they
are known as Lorenz curves, associated to the concept of
concentration curve, and frequently used to compare the situation
in different countries or to assess the evolution of the concentra-
tion of wealth over time in a given country. In this paper, the CSM
plot is revived in the context of SA of computer models. Rather
than aggregated data from official statistics, random samples
characterising the input–output mapping of mathematical models
are analysed. In Section 3, the scope and potential of this
generalised approach are discussed; the outcomes are illustrated
using the application example presented in Section 2. In Section 4,
a permutation-based statistical test is proposed in order to

determine whether the behaviour characterised by the CSM plot
significantly departs from randomness. Results from numerical
experiments are reported and discussed in Section 5; finally,
conclusions are drawn in Section 6.

2. Description of the test case

In order to illustrate the potential of the plot proposed by
Sinclair [8] and evaluate the reliability of the proposed approach,
we consider a model reproducing the behaviour of a radioactive
high-level waste repository and the disposed contaminant. The
so-called Level E model was used as a benchmark for SA methods
[10,11]. In this section, the main features of the model will be
described and asymptotic Monte Carlo estimates characterising
the behaviour of the model will be reported.

2.1. Level E model for a radioactive high-level waste repository

The model predicts the radiological dose to humans over
geological time scales due to the underground migration of
radionuclides from a nuclear waste disposal site. The scenario
considered in the model tracks the one-dimensional migration of
four radionuclides (129I and the chain 237Np!233U!229Th)
through two geosphere layers characterised by different hydro-
geological properties. The processes being considered in the
model are radioactive decay, dispersion, advection and chemical
reaction between the migrating nuclides and the porous medium.
The repository is represented as a point source. The simulation
model includes 12 uncertain inputs, which are listed in Table 1
together with a set of parameters which are assumed constant.

2.2. Characterisation of the model behaviour

The quantity of interest considered in this study is the annual
radiological dose due to the four radionuclides. As emphasised in
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Table 1
List of model inputs for the Level E.

Notation Definition Distribution Range Units

T Containment time Uniform ½100;1000� y

kI Leach rate for iodine Log-uniform ½10�3 ;10�2
� mol=y

kC Leach rate for Np chain nuclides Log-uniform ½10�6 ;10�5
� mol=y

V ð1Þ Water velocity in geosphere’s 1st layer Log-uniform ½10�3 ;10�1
� m=y

Lð1Þ Length of geosphere’s 1st layer Uniform ½100;500� m

Rð1ÞI
Retention factor for I (1st layer) Uniform ½1;5� –

Rð1ÞC
Factor to compute retention

coefficients for Np chain nuclides (1st layer) Uniform ½3;30� –

V ð2Þ Water velocity in geosphere’s 2nd layer Log-uniform ½10�2 ;10�1
� m=y

Lð2Þ Length of geosphere’s 2nd layer Uniform ½50;200� m

Rð2ÞI
Retention factor for I (2nd layer) Uniform ½1;5� –

Rð2ÞC
Factor to compute retention

coefficients for Np chain nuclides (2nd layer) Uniform ½3;30� –

W Stream flow rate Log-uniform ½105 ;107
� m3=y

C0
I

Initial inventory for 129I Constant 100 mol

C0
Np

Initial inventory for 237Np Constant 1000 mol

C0
U

Initial inventory for 233U Constant 100 mol

C0
Th

Initial inventory for 229Th Constant 1000 mol

w Water ingestion rate Constant 0:73 m3=y

bI Ingestion-dose factor for 129I Constant 56 Sv/mol

bNp Ingestion-dose factor for 237Np Constant 6:8� 103 Sv/mol

bU Ingestion-dose factor for 233U Constant 5:9� 103 Sv/mol

bTh Ingestion-dose factor for 229Th Constant 1:8� 106 Sv/mol
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