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Nonuniform shrinkage during sintering results from the nonuniform green density distribution in a com-
pacted powder body and this creates a severe problem in net-shape forming. Therefore, proper selection
of the process parameters, such as compaction die design, upper and lower punch displacements, and
sequential tool motion, is very important for the optimum design of die compaction processing. Previ-
ously, these were guess-estimated based on experience. As a first step in developing a more scientific
design technique in powder metallurgy, the equations for the adjoint variable method (AVM) for the
non-steady-state uniaxial powder compaction process are derived in detail. The accuracy of the AVM is
verified through the comparison of the design sensitivity with calculations performed using the finite
difference method.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Powder metallurgy and particulate materials (P/M2) processes
obtain the designed shape and mechanical strength using a two-step
approach that first relies on uniaxial die compaction followed by
sintering. Such an approach is applied to metals, polymers, ceramics,
cermets, and mixtures of metal, ceramic, or carbide powders. Often
a polymer or other lubricant is added to the powders to improve
tool life. Since the range of sintered components is broad in terms
of materials and shapes, the options in P/M2 have rapidly developed
to include many options.

In recent years, sintered products have been broadly adopted
by the automotive industry for the purpose of reducing cost and
weight [1]. Recently, other forming processes, such as powder in-
jection molding and extrusion, have been developed for shaping the
desired geometry [2], but uniaxial die compaction is still the most
popular forming approach. After compaction, the sintered compact
often distorts since the sintering dimensional change depends on
green density. The nonuniform density distribution resulting from
the compaction event leads to distortion and an inability to hold
tight tolerances. There are two main causes for the nonuniform
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density: (1) the friction between the particles and tool surface and
(2) nonuniform stress on the compaction body results from the pres-
sure decay with depth in the green body. Therefore, often expensive
finishing steps, such as machining, are needed to achieve the desired
tolerances.

To reduce green density gradients in the compact, field engi-
neers havemainly focused on reducing the friction between powders
and tooling using lubricants. However, the nonuniform green den-
sity cannot be eliminated simply by adjusting the powder-tooling
friction. In this paper, we studied a systematic methodology for de-
termining the compaction process parameters, including upper and
lower punch speed control as well as optimized die shape.

Previously, diverse optimization techniques have been used for
forming processes such as extrusion, rolling, forging, and powder
forging. They include backward tracing schemes [3,4], genetic algo-
rithms [5,6], and derivative-based approaches [7–16]. Among these
techniques, the derivative-based approaches are generally superior
when considering the quality of the design and time consumption. In
using derivative-based approaches, calculation of the design sensi-
tivity (DS) is very important. To calculate the DS, analytical methods
such as the adjoint variable method (AVM) and direct differentia-
tion method (DDM) and numerical methods such as finite difference
method (FDM) are being used. Since the FDM requires additional fi-
nite element (FE) calculations depending on the number of design
variables (DV), it is not used in the optimization iterations. Rather it
is used for verifying the DS by the analytical method.
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According to the method of treating the derivative of the FE so-
lutions, such as velocity field with respect to design parameters, the
analytical methods can be classified into the DDM and AVM. In the
DDM the derivative is directly calculated but in the AVM it is treated
by introducing the Lagrangian multipliers on the FE equations. In
order to calculate the design sensitivity, that is the derivative of ob-
jective function with respect to DVs, it is necessary to calculate the
derivative of the FE solution such as the velocity field, with respect to
DVs. The calculation time for this derivative costs much and is pro-
portional to the number of DVs. On the contrary to DDM, AVM does
not directly calculate the derivative by introducing adjoint variable.
Therefore, AVM is more powerful for calculating design sensitivity
in terms of calculating time especially when the number of DVs is
large [17]. However, the treatment of adjoint variable is very com-
plicated and hard to derive especially in non-steady forming. There-
fore, the AVM has been used in steady-state forming, while the DDM
has been used in non-steady forming. However, Chung et al. [18] de-
rived the equations for the AVM to find the optimal intermediate die
shape in a non-steady-state forging process; this gave an application
of the AVM to non-steady forming process. In this study the AVM is
adapted to reduce time cost through the derivation of the equations
for the AVM in non-steady forming of porous material. See Ref. [19]
for the detail of design sensitivity analysis.

For the first step of developing the optimization tool, this paper
considers the uniaxial die compaction process. Since die compaction
is carried out in room temperature, the material properties depend
on just the relative density and effective strain. Therefore, consid-
eration of the derivatives related to relative density and effective
strain is included in the derivation of the AVM. In Section 2 of this
paper, the constitutive model for a powder body in die compaction
process is given and the boundary value problem (BVP) and FE for-
mulation are explained. In Section 3, equations for the AVM in die
compaction process are generally derived using FE formulation to
generate a general form of the objective function. In Section 4, the
optimization scheme based on the DS is introduced. In Section 5,
the DS obtained by the AVM is verified by comparing it with that by
the FDM. In Section 6, the upper and lower punch speed is optimized
to obtain uniform relative density distribution. Finally, in Section 7,
we offer conclusions and outline further work.

2. Finite element (FE) formulation

2.1. Yield criteria of porous body

In the die compaction process, the deformation behavior of the
powder is based on a yield criterion. Unlike bulk solids, the volume
change in compaction requires the yield criterion for a powder in-
cluding the hydrostatic pressure as follows:

AJ′2 + BJ21 = �̄2, (1)

where A and B are material parameters that are functions of relative
density, J1 is the first invariants of the stress tensor �ij, J′2 is the
second invariant of the deviatoric part of stress tensor �ij, and �̄
is the effective stress of powder continuum. The effective stress of
powder continuum can be expressed by the function of the effective
stress on the base material and relative density as follows.

�̄ =
√

�(�)�̄m(�̄m, ˙̄�m, T), (2)

where � is the material parameter with function of relative density
�, �̄m the effective strain of the base material, ˙̄�m the effective strain
rate of base material, and T the temperature.

From the uniaxial tension or compression test, the relation of A
and B is A = 3(1−B). According to the definition of A and �, many cri-
teria have been suggested [18,20–23]. We have rich experiences of

Fig. 1. Diagram for notation in domain and boundary conditions.

Shima and Oyane's [21] criterion in die compaction process [24–26].
Therefore, in this study, Shima and Oyane's criterion is used as
follows:

A = 3
1 + 0.694(1 − �)

and � = �5

1 + 0.694(1 − �)
. (3)

2.2. Boundary value problem (BVP)

Consider a deforming body � with the velocity ui = �ui prescribed
on a part �u. Let �c be the remainder of the surface and assume
that represents the tool–workpiece interface, as shown in Fig. 1.
The boundary value problem associated with current moment in
the non-steady-state plastic deformation process can be given as
follows:

Find a velocity field ui satisfying

• mass balance:

�̇
�

= −�̇v, (4)

where � is time derivative of relative density � and �̇v is the first
invariant of strain tensor �̇ij,

• equilibrium equation:

�ij,j + fi = 0, (5)

where �ij,j is the gradient of stress tensor �ij and fi is the external
body force,

• constitutive equation:

�′
ij =

2
A

�̄
˙̄� �̇′

ij, (6)

p = − 1
3(3 − A)

�̄
˙̄� �̇v, (7)

˙̄� =
√
2
A
�̇′
ij�̇

′
ij +

1
3(3 − A)

�̇2v, (8)
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