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a b s t r a c t

Computational mechanics models often are compromised by uncertainty in their governing parameters,
especially when the operating environment is incompletely known. Computational sensitivity analysis
of a spatially distributed process to its governing parameters therefore is an essential, but often
costly, step in uncertainty quantification. A sensitivity analysis method is described which features
probabilistic surrogate models developed through equitable sampling of the parameter space, proper
orthogonal decomposition (POD) for compact representations of the process’ variability froman ensemble
of realizations, and cluster-weighted models of the joint probability density function of each POD
coefficient and the governing parameters. Full-field sensitivities, i.e. sensitivities at every point in the
computational grid, are computed by analytically differentiating the conditional expected value function
of each POD coefficient and projecting the sensitivities onto the POD basis. Statistics of the full-field
sensitivities are estimated by sampling the surrogate model throughout the parameter space. Major
benefits of thismethod are: (1) the sensitivities are computed analytically and efficiently from regularized
surrogate models, and (2) the conditional variances of the surrogate models may be used to estimate the
statistical uncertainty in the sensitivities, which provides a basis for pursuing more data to improve the
model. Synthetic examples and a physical example involving near-ground sound propagation through a
refracting atmosphere are presented to illustrate the properties of the surrogatemodels and how full-field
sensitivities and their uncertainties are computed.

Published by Elsevier Ltd

1. Introduction

1.1. Defining the context

Computational models of complex physical systems are un-
avoidably compromised by assumptions, uncertainties, and errors.
A natural consequence is that the analyst’s workmay lack credibil-
ity, both because the problemat hand is complicated and themodel
building process lacks transparency. The concepts andmethodpre-
sented here support on-going computational modeling efforts to
define models of systems and their environments in ways that
promote increased confidence in predictions. We pursue this by
developing tools that can provide (i) an informed basis for using
measurements to support predictions, (ii) insight into the model
building process, and (iii) insight into how limited knowledge of
model parameters may compromise predictions. This paper de-
scribes a sampling-based method for developing probabilistic sur-
rogate models in support of global, full-field sensitivity analysis,
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a concept which is defined below. The sensitivity calculations are
fast and insensitive to the number of parameters because the sensi-
tivities are computed by analytically differentiating the conditional
expected value of the surrogatemodel rather than fitting a local re-
sponse surface to samples of the surrogatemodel. Through the con-
ditional variance of the surrogate model, the method also permits
estimating the statistical uncertainty induced in the sensitivities
by fitting the surrogate model to a given set of samples.
Constructing and making the best use of parametric models for

uncertainty quantification (UQ) requires knowledge of how the
parameters may vary throughout the system’s lifetime and how
these variations can alter the system’s state. Sensitivity analysis
(SA) has been developed by many researchers and applications
specialists to fulfill these needs. To continue enhancing the
practicality and benefits of SA, we study what we call global, full-
field sensitivity analysis, which we define in the following section.
Our goal is to provide a framework that enables the use of SA
to support UQ of realistic computational mechanics models. We
see this as an essential step toward validating these models and
enhancing their utility in decision making. The reader should note
before proceeding that we do not consider non-probabilistic or
generalized probabilistic methods, which commonly involve the
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Nomenclature

a(n)q qth generalized Fourier coefficient of nth snapshot.
Dζ̂ M-dimensional hypercube in the normalized pa-

rameter space.
dζm Range of parameter ζm.
f (·) Probability density or mass function.
M Number of system parameters.
N Number of Latin hypercube sample vectors.
Nc Number of parameter clusters in cluster-weighted

model.
nc Cluster number.
Ng Number of grid points in a snapshot.
Nr Number of retained proper orthogonal decomposi-

tion modes.
p(·) Response random field.
S Column-oriented array of snapshots.
s Snapshot.
Sqm Sensitivity of POD coefficient a(q) to normalized

parameter ζ̂m.
t Time.
V Array of eigenvectors of ST S.
x Position vector.
m Parameter number.
βnc Linear regression parameters in cluster nc .
∆a(q) Uncertainty in forecast of POD coefficient a(q).
Λ Array of eigenvalues of ST S.
〈g〉nc Expected value of function g given cluster nc .
µa Expected value function of POD coefficient a in

cluster nc .
µnc ,m Expected value of parameterm in cluster nc .
Ω Sample space.
ω Element in the sample space, i.e. an event.
Φ Array of proper orthogonal decomposition modes.
σa,nc Standard deviation of POD coefficient a in cluster nc .
σnc ,m Standard deviation of parameterm in cluster nc .
ζ (ω) Random vector of system parameters.

introduction of fuzzy or non-additive measures; see the handbook
edited by Nikolaidis, et al. [1] for authoritative introductions to
the various methods and the supporting literature. We also do not
pursue the even broader problem of assessing model validity.
In the authors’ current field of study, predictions of near-ground

sound propagation are compromised by statistical uncertainty and
model errors in the atmosphere and terrain characterization. High
quality physical and numerical representations are available, but
imprecise knowledge of the heterogeneous propagation environ-
ment impedes attempts to achieve spatial and temporal accuracy
in sound field predictions [2]. Embleton [3] summarizes many of
these environmental factors, which include (i) the topography and
acoustic impedance of the ground or lower boundary of the prop-
agation domain, (ii) the interaction of turbulent and radiative ex-
changes with this surface, which alters the velocity and thermal
gradients in the atmospheric surface layer (ASL), and (iii) spatio-
temporal variability in the atmosphere. After describing the com-
ponents and products of our SA method, we demonstrate it by
studying the sensitivity of a near-ground sound propagationmodel
throughout both the relevant parameter space and the physical do-
main. However, we emphasize that the method is independent of
this application.

1.2. Local, global, and full-field sensitivity analyses

Sensitivity analysis of a computational model is restricted
here to the organized assessment of changes in a model’s output

due to changes in its parameters. UQ of any complex, multiple
parameter model ought to begin with SA to reveal the parameters
that can induce the most imprecision and randomness in the
response. Doing so helps to determine the relative accuracies
required in measurements and probabilistic parameter models. It
also provides information for planning measurement programs to
support more extensive modeling efforts.
The most direct form of SA is to compute through analysis or

finite differences how variations in the neighborhood of baseline
parameter values influence an output of interest; this is local
SA [4]. A parallel, but distinct, concern, especially when SA is
used to support UQ, is how to estimate efficiently the range of
sensitivities throughout the feasible portion of a multidimensional
parameter space; this is global SA [4]. The distinction is important
when a model exhibits substantial variations in its parameter
sensitivities, i.e. nonlinear sensitivities, as various neighborhoods
in the parameter space are interrogated [4,5].
The most direct application of SA for a spatially continuous

system is to study the response at a limited set of points in
the spatial domain. Another common use of SA occurs when the
output of interest is a subset or functional of fundamental response
variables, e.g. the integrated aerodynamic forces on awing. In these
cases, adjoint SA is a powerful method that has been demonstrated
successfully in many applications [6,7]. SA methods appear to
have been less widely studied for directly examining the influence
of model parameters and initial conditions on the response field
throughout the spatial domain. We refer to this as full-field
sensitivity analysis (FFSA). In the SA method described herein, we
compute sensitivities throughout both the parameter space and
the spatial grid in which the response field is simulated; hence, we
call this global, full-field sensitivity analysis, or global FFSA.

2. Full-field surrogate models for sensitivity analysis

2.1. Latin hypercube sampling

The response process is viewed as a random field, p(x; ζ (ω)),
where x ∈ R3 is the position vector, ω ∈ Ω is an element of
the sample space, and ζ (ω) is an M-dimensional random vector
of system parameters. Latin hypercube sampling (LHS) [8–10] is
used to chooseN random realizations of the normalized parameter
vector, ζ̂ , distributed throughout the Cartesian product space
ŚM
m=1[−0.5, 0.5] ⊂ RM , the goal being to ensure every portion

of each parameter’s range is sampled. To simplify the sampling
process, the parameters are assumed to be independent. This does
not compromise the conclusions of our study because the goal is to
compute sensitivity to each parameter; assessing the importance
of each sensitivity based on the actual variability of each parameter
in a specific application is a related but separate concern.

2.2. Proper orthogonal decomposition of the response field

For the sake of generality, we can write the response as
p(t, x; ζ (ω)), where time is now allowed to be an independent
variable; i.e. for a given ω, p(t, x) is a single realization that varies
over time and space. Proper orthogonal decomposition (POD) is
used herein to compute a mean–square optimal representation
of the ensemble of response fields produced by LHS. POD shares
its theoretical foundation with a variety of methods from several
disciplines, including empirical orthogonal functions and principal
component analysis. The underlying approximation theory is em-
bodied by the finite-dimensional Karhunen–Loève decomposition,
but these connections will not be discussed much here; consult
Holmes, et al. [11], Kirby [12], andMallat [13] formore background.
POD is not an inherently probabilistic technique. Often it is

applied in deterministic applications, e.g. Hall, et al. [14] and
Pettit and Beran [15], but its practical implementation requires
the computation of many snapshots of the process. Snapshots
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