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a b s t r a c t

This paper presents a polynomial dimensional decomposition (PDD) method for global sensitivity

analysis of stochastic systems subject to independent random input following arbitrary probability

distributions. The method involves Fourier-polynomial expansions of lower-variate component func-

tions of a stochastic response by measure-consistent orthonormal polynomial bases, analytical

formulae for calculating the global sensitivity indices in terms of the expansion coefficients, and

dimension-reduction integration for estimating the expansion coefficients. Due to identical dimen-

sional structures of PDD and analysis-of-variance decomposition, the proposed method facilitates

simple and direct calculation of the global sensitivity indices. Numerical results of the global sensitivity

indices computed for smooth systems reveal significantly higher convergence rates of the PDD

approximation than those from existing methods, including polynomial chaos expansion, random

balance design, state-dependent parameter, improved Sobol’s method, and sampling-based methods.

However, for non-smooth functions, the convergence properties of the PDD solution deteriorate to a

great extent, warranting further improvements. The computational complexity of the PDD method is

polynomial, as opposed to exponential, thereby alleviating the curse of dimensionality to some extent.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Mathematical modeling of complex systems often requires
sensitivity analysis to determine how an output variable of
interest is influenced by individual or subsets of input variables.
A traditional local sensitivity analysis entails gradients or deriva-
tives, often invoked in design optimization, describing changes in
the model response due to the local variation of input. Depending
on the model output, obtaining gradients or derivatives, if they
exist, can be simple or difficult. In contrast, a global sensitivity
analysis (GSA), increasingly becoming mainstream, characterizes
how the global variation of input, due to its uncertainty, impacts
the overall uncertain behavior of the model. In other words, GSA
constitutes the study of how the output uncertainty from a
mathematical model is divvied up, qualitatively or quantitatively,
to distinct sources of input variation in the model [1].

Almost all GSA are based on the second-moment properties of
random output, for which there exist a multitude of methods or
techniques for calculating the global sensitivity indices. Promi-
nent among them are a random balance design (RBD) method [2],
which integrates its previous version [3] with a Fourier amplitude
sensitivity test [4]; a state dependent parameter (SDP) meta-
model [5] based on recursive filtering and smoothing estimation;

and a variant of Sobol’s method with an improved formula [6–8].
More recent developments on GSA include application of poly-
nomial chaos expansion (PCE) [9] as a meta-model, commonly
used for uncertainty quantification of complex systems [10].
Crestaux et al. [11] examined the PCE method for calculating
sensitivity indices by comparing their convergence properties
with those from standard sampling-based methods, including
Monte Carlo with Latin hypercube sampling (MC-LHS) [12] and
quasi-Monte Carlo (QMC) simulation [13]. Their findings reveal
faster convergence of the PCE solution relative to sampling-based
methods for smoothly varying model responses, but the convergence
rate may degrade markedly when confronted with non-smooth
systems. They also found the PCE method to be cost effective for
low to moderate dimensional systems, even with smooth responses,
imposing a heavy computational burden when there exist a mere
ten variables or more. Indeed, computational research on GSA is far
from complete and, therefore, development of alternative methods
for improving the accuracy or efficiency of existing methods is
desirable.

This paper presents an alternative method, known as the
polynomial dimensional decomposition (PDD) method, for var-
iance-based GSA of stochastic systems subject to independent
random input following arbitrary probability distributions. The
method is based on (1) Fourier-polynomial expansions of lower-
variate component functions of a stochastic response by measure-
consistent orthonormal polynomial bases; (2) analytical formulae
for calculating the global sensitivity indices in terms of the
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expansion coefficients; and (3) dimension-reduction integration
for efficiently estimating the expansion coefficients. Section 2
reviews a generic dimensional decomposition of a multivariate
function, including three distinct variants. Section 3 invokes the
properties of lower-variate component functions of a dimensional
decomposition, leading to a formal definition of the global
sensitivity index. The Fourier-polynomial expansion, calculation
of sensitivity indices, dimension-reduction integration, including
the computational effort, and novelties are described in Section 4.
Five numerical examples illustrate the accuracy, convergence
properties, and computational efficiency of the proposed method
in Section 5. Finally, conclusions are drawn in Section 6.

2. Dimensional decomposition

Let ðO,F ,PÞ be a complete probability space, where O is a
sample space, F is a s-field on O, and P : F-½0,1� is a probability
measure. With BN representing the Borel s-field on RN , consider
an RN-valued independent random vector X ¼ fX1, . . . ,XNg

T :
ðO,F Þ-ðRN ,BNÞ, which describes statistical uncertainties in all
system and input parameters of a given stochastic problem. The
probability law of X is completely defined by the joint probability
density function fXðxÞ ¼

Qi ¼ N
i ¼ 1 fiðxiÞ, where fiðxiÞ is the marginal

probability density function of Xi defined on the probability triple
ðOi,F i,PiÞ. Let yðXÞ :¼ yðX1, . . . ,XN), a real-valued, square-integr-
able, measurable transformation on ðO,F Þ, define a relevant
response of the stochastic system. A general dimensional decom-
position of yðXÞ, described by [14–20]

yðXÞ ¼ y|þ
X

uD f1,...,Ng

yuðXuÞ, ð1Þ

can be viewed as a finite, hierarchical expansion of an output
function in terms of its input variables with increasing dimen-
sions, where |auDf1, . . . ,Ng is a subset with the complementary
set �u¼ f1, . . . ,Ng�u and cardinality 1r jujrN, y| is a constant,
and yuðXuÞ is a juj-variate component function describing the
cooperative influence of Xu, a subvector of X, on y. The summa-
tion in Eq. (1) comprises 2N

�1 terms, with each term depending
on a group of variables indexed by a particular subset of f1, . . . ,Ng.
The origin of dimensional decomposition can be traced to the
work of Hoeffding [14] in the 1940s and is well known in the
statistics literature as analysis of variance (ANOVA) [15]. This
decomposition, later referred to as high-dimensional model
representation (HDMR), was subject to further refinements,
including cut-HDMR [16] and random-sampling (RS)-HDMR [17].
The author’s group examined this decomposition from the
perspective of Taylor series expansion, calculating the statistical
moments [18,19] and reliability [20] of mechanical systems.

An important feature of the decomposition in Eq. (1) is the
selection of the constant y| and component functions yuðXuÞ,
|auDf1, . . . ,Ng. By defining an error functional associated with a
given yðXÞ and an appropriate kernel function, an optimization
problem can be formulated and solved to obtain the desired
constant and component functions. However, different kernel
functions will create distinct yet formally equivalent decomposi-
tions, all exhibiting the same structure of Eq. (1). There exist three
important variants of the decomposition, described as follows.

2.1. Referential dimensional decomposition

The referential dimensional decomposition (RDD) involves the
Dirac measure

QN
i ¼ 1 dðxi�ciÞ at a reference point cARN as the

kernel function, leading to [16,19]

yðXÞ ¼ yðcÞþ
X

uD f1,...,Ng

X
vDu

ð�1Þjuj�jvjyðXv,c�vÞ, ð2Þ

where ðXv,c�vÞ denotes an N-dimensional vector whose ith
component is Xi if iAv and ci if i=2v: Both the recursive form,
presented as the cut-HDMR method [16], and the explicit form, in
conjunction with the dimension-reduction [19] or decomposi-
tion [20] method, of Eq. (2) exist. These two forms, developed
independently, have been proved to be equivalent [21]. None-
theless, the RDD component functions lack orthogonal features,
but are easy to obtain as they only involve function evaluations at
a chosen reference point.

2.2. ANOVA dimensional decomposition

The ANOVA dimensional decomposition (ADD) entails the
probability density function fXðxÞ of X as the kernel function,
which results in [15,22]

yðXÞ ¼ y0þ
X

uD f1,...,Ng

X
vDu

ð�1Þjuj�jvj
Z
RN�jvj

yðXv,x�vÞfX�v
ðx�vÞ dx�v, ð3Þ

where y0 is an expansion coefficient. Again, there exists a
recursive form of Eq. (3) [22]. The ANOVA decomposition also
has a few synonyms, notably, Sobol decomposition, which has
been used by Sudret [9] and Crestaux et al. [11], among others.
While ADD has desirable orthogonal properties, the ANOVA
component functions are difficult to obtain, because they require
calculation of high-dimensional integrals.

2.3. Polynomial dimensional decomposition

If fcijðXiÞ; j¼ 0,1, . . .g is a set of orthonormal polynomial basis
functions in the Hilbert space L2ðOi,F i,PiÞ and is consistent with
the probability measure Pi of Xi, then the ANOVA decomposition
can be extended to generate the PDD of [23,24]

yðXÞ ¼ y0þ
X

u ¼ fi1 ,...,ijujgD f1,...,Ng

X1
jijuj
¼ 1

� � �
X1

ji1
¼ 1

Ci1���ijuj ji1 ���jijuj
ci1ji1
ðXi1 Þ � � �

cijujjijuj
ðXijuj Þ, ð4Þ

where Ci1���ijuj ji1 ���jijuj
, 1r jujrN, are additional expansion coeffi-

cients that also require calculating high-dimensional integrals.
The PDD also has orthogonal component functions and exploits
the smoothness of y, if any, for efficiently calculating its prob-
abilistic characteristics. The author’s recent work reveals that the
measure-consistent PDD [24] leads to faster convergence of
stochastic solutions, when compared with the traditional ANOVA
decomposition employing uniform probability measure, also
known as RS-HDMR [17].

3. Global sensitivity analysis

3.1. Variance decomposition

The ADD in Eq. (3) can be written more explicitly as

yðXÞ ¼ y0þ
XN

i ¼ 1

yiðXiÞþ
XN�1

i1 ¼ 1

XN

i2 ¼ i1þ1

yi1i2 ðXi1 ,Xi2 Þþ � � �

þ
XN�sþ1

i1 ¼ 1

� � �
XN

is ¼ is�1þ1

yi1 ���is ðXi1 , . . . ,Xis
Þþ � � � þy12���NðX1, . . . ,XNÞ,

ð5Þ
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