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a  b  s  t  r  a  c  t

This  paper  presents  a detailed  model  for  possible  vibration  effects  on  MEMS  degenerate  gyroscopes  rep-
resented  by  vibratory  ring  gyroscopes.  Ring  gyroscopes  are  believed  to  be  relatively  vibration-insensitive
because  the  vibration  modes  utilized  during  gyro  operation  are  decoupled  from  the  modes  excited  by
environmental  vibration.  Our  model  incorporates  four  vibration  modes  needed  to  describe  vibration-
induced  errors:  two  flexural  modes  (for  gyro  operation)  and  two translation  modes  (excited  by  external
vibration). The  four-mode  dynamical  model  for ring  gyroscopes  is  derived  using  Lagrange’s  equations.  The
model  considers  all elements  comprising  a ring  gyroscope,  namely  the  ring  structure,  the  support-spring
structures,  and the  electrodes  that surround  the  ring  structure.  Inspection  of  this  model  demonstrates
that  the  output  of  a  ring  gyroscope  is  fundamentally  insensitive  to vibration  due to  the  decoupled  dynam-
ics  governing  ring  translation  versus  ring  flexure,  however,  becomes  vibration-sensitive  in  the  presence
of  non-proportional  damping  and/or  capacitive  nonlinearity  at the  sense  electrodes.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Mechanical vibrations potentially degrade the performance of
microelectromechanical systems (MEMS) devices because the per-
formance frequently relies on the displacements of or stress in
microstructures. The undesirable dynamics induced by external
vibration generates errors in the device output. Such vibration-
induced output errors, also called vibration sensitivity, have been
reported for various MEMS  sensors and actuators. MEMS  vibra-
tory gyroscopes, because of their high quality factor (Q-factor), are
known to be susceptible to vibration. The high Q is beneficial in
improving gyro performance but also amplifies vibration ampli-
tudes at certain frequencies and increases output signal distortions.
Whereas, degenerate MEMS  gyroscopes are conceptually known to
be less sensitive to environmental excitation because of inherently
symmetric gyro structures [1,2].

Degenerate MEMS  gyroscopes utilize a degenerate vibration
mode pair as the drive and sense modes to maximize the energy
transfer between the two modes. A degenerate pair of vibration
modes refers to two modes that have distinct mode shapes but
identical natural frequencies [3,4]. Many degenerate gyroscopes
utilize the so-called wine-glass modes of a vibrating shell struc-
ture representing two flexural modes (i.e., drive and sense modes).
Wine-glass modes arise in several shell-like structures, including
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common ring gyroscope designs [1,2,5].  The natural frequencies of
axisymmetric ring structures arise as degenerate pairs when the
structures are fabricated from isotropic materials [4,6].

Fig. 1 illustrates a conceptual view of a ring gyroscope. A vibra-
tory ring gyroscope consists of a ring structure, support-spring
structures, and electrodes surrounding the ring structure. The
electrodes are used for drive, sense, or control of the gyro. The
operation of the ring gyroscope relies on two  elliptically shaped
vibration modes, named the primary and secondary flexural modes,
which are also called the drive and sense modes, respectively. The
two flexural modes have identical natural frequencies due to the
(assumed) symmetry of the ring. Several variations of this design
are also reported in [5,7–11], but the basic concept remains the
same.

Ring gyroscopes are known to have a low vibration sensitiv-
ity because external vibration excitation couples only weakly (if
at all) to the two flexural modes [1,12,13]. This knowledge is
based on the vibration modes of axisymmetric ring structures
[14,15]. Nonetheless, several studies offer qualitative explanations
of potential vibration-induced error sources in degenerate gyro-
scopes including hemispherical resonator gyros [16] and ring gyros
[1]. Therefore, it is still crucial to analyze and understand the oper-
ation of ideal ring gyros subjected to external vibration.

Several studies report rigorous analyses of ring gyro opera-
tion [1,2,17,18] or the ring gyro’s response to external vibration
[1,19–21]. However, these prior studies only present models that
consider only partial components compromising a ring gyroscope
or do not include sufficient number of vibration modes needed
to analyze both gyro operation and vibration-induced errors. For
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Nomenclature

�u vibration-induced displacement. Also represents
the total displacement of a point on the ring struc-
ture due to translation and flexure, �u = �uT + �uF

�uT displacement of the center of the ring structure due
to translation

�uF displacement of a point on the ring structure due to
flexure

ux, uy scalar components of total displacement in Carte-
sian coordinates

ur, u� scalar components of total displacement in polar
coordinates

u1 and u2, q1 and q2, ˚1 and ˚2 vibration-induced displace-
ment, generalized (modal) coordinate, mode shape
of 1st and 2nd translation modes

u3 and u4, q3 and q4, ˚3 and ˚4 vibration-induced displace-
ment, generalized (modal) coordinate, mode shape
of 1st and 2nd flexural modes

˚r1/˚�1, ˚r2/˚�2, ˚r3/˚�3, ˚r4/˚�4 radial/tangential com-
ponents of mode shapes of 1st and 2nd translation
modes and 1st and 2nd flexural modes

˚x1/˚y1, ˚x2/˚y2, ˚x3/˚y3, ˚x4/˚y4 X and Y components of
mode shapes of 1st and 2nd translation modes and
1st and 2nd flexural modes

X0Y0Z0 inertial frame of reference
XYZ translating and rotating (non-inertial) frame of ref-

erence. The origin of this frame is the original center
of the ring structure (prior to any translation or this
structure)

�Uarb position of a point on the ring structure (shown as
U in Fig. 4) relative to the inertial frame X0Y0Z0

�r0 position vector from the origin of the inertial frame
to the origin of the non-inertial frame (XYZ)

�rp position vector from the center of the ring structure
to a point on the undeformed ring

Rring, Wring, and hring radius, width and thickness of ring
structure

rspring radius of support springs
�n and ��n location of each electrode and the arc of the

electrode in Fig. 7
g0 equilibrium gap spacing of electrodes of a ring gyro-

scopes
gd equilibrium gap spacing of drive electrodes of a ring

gyroscopes. Generally, gd = g0.
gs equilibrium gap spacing of sense electrodes of a ring

gyroscopes. Generally, gs = g0.
Cn capacitance of each electrode in a ring gyroscope
cij, modal damping coefficients (i, j = 1,2,3,4)
ε permittivity

instance, models exist that consider only the mechanical ring struc-
tures and ignore the support-spring structures [17–20],  consider
mechanical structures without electrodes [20,21], or do not account
for the vibration modes directly excited by external vibration
[1,2,10]. The potential energy of the support-spring structure needs
to be included because the flexural stiffness of each support spring
is not negligible compare to the stiffness of a ring structure [2,21].
The electrostatic force from the electrodes is important in evaluat-
ing gyro performance and vibration sensitivity [10,22].  The gyro
read-out circuits often utilize parallel-plate sensing mechanism
that contributes a nonlinear behavior between sense capacitance
and sense axis displacement. This capacitive nonlinearity gener-
ates vibration-induced errors in other types of gyroscopes, such

as tuning fork gyroscopes [22]. Thus, it is essential to consider all
components of ring gyroscopes to achieve a comprehensive under-
standing of vibration sensitivity of ring gyroscopes.

This paper fills this void by contributing a detailed model that
includes all components of ring gyroscopes (including the ring
structure, the support-beam structure, the electrodes, and damp-
ing). The model describe both gyro operation and its response
to external vibration by employing Lagrange’s equation and four
vibration modes either representing ring gyro operation (named
flexural modes) or excited by external linear vibration (named
translation modes). This work analyzes ideally fabricated ring
gyroscopes and represents a step toward a complete model to
understand the vibration sensitivity of MEMS  ring gyroscopes.

We  open with an overview of this model in Section 2 and derive
equations governing energies from or work done by each ring-gyro
components described from Sections 2–6.  The derived equations
are analyzed using Lagrange’s equation in Section 7. Furthermore,
the effect of capacitive nonlinearity at sense electrodes is analyzed
in Section 8. In addition, we also briefly discuss the effect of non-
ideality including non-proportional damping (Section 6.2).

2. Overview of model

2.1. Ring gyroscope operation

The ring gyroscope, shown in Fig. 1, operates as follows. First
the electrostatic drive is used to excite the primary flexural (drive)
mode in resonance. When the device is subjected to superimposed
rotation, a portion of the vibration energy is transferred from the
primary flexural mode to the secondary flexural (sense) mode.
The amplitude of the radial displacement of the secondary flexural
mode is proportional to the rotation rate and thus this displace-
ment serves as the means to detect the rotation rate. Environmental
vibration may  also excite other vibration modes, particularly the
two ring translation modes which induce a rigid translation of the
ring on its flexible support. Thus, the overall motion of the ring
is decomposed into that excited by the gyro’s operation (flexural
modes) from that excited by environmental vibration (ring trans-
lation modes).

The support-spring structure in this illustrated design utilizes
eight semicircular springs that attach the ring structure to the
substrate at the center of the ring. The eight-spring design plays
an important role in suspending the ring structure, in assuring
balanced and symmetric operation of the ring gyroscope, and in
allowing the two  flexural modes to have identical natural frequen-
cies. The necessity for using eight springs is discussed in previous
works [1,2].

Unlike the non-degenerate gyroscopes, like tuning fork gyros,
ring gyroscopes cannot be analyzed using simple lumped models
because the mass and the stiffness of the ring gyro are distributed
along the ring. Herein, we represent the ring as a continuous
(curved) beam and represent each support-beam as a discrete
spring attached to the ring mass.

2.2. Modeling approaches and assumptions

We  model two primary classes of vibration modes: translation
modes and flexural modes. Ring gyroscope designs (made of either
Nickel [1] or polysilicon [2]) possess translation modes having
resonant frequencies (∼20 kHz) much smaller than those of flex-
ural modes (∼30 kHz). Therefore, the translation modes are more
susceptible to external/environmental vibration whose frequency
spectrum also lies well below these resonant frequencies. Of
course, ultra-high frequency external vibration may also directly
excite the flexural modes but this would indeed be rare, except
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