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a b s t r a c t

This paper presents ‘‘contribution to sample variance plot’’, a natural extension of the ‘‘contribution to

the sample mean plot’’, which is a graphical tool for global sensitivity analysis originally proposed by

Sinclair. These graphical tools have a great potential to display graphically sensitivity information given

a generic input sample and its related model realizations. The contribution to the sample variance can

be obtained at no extra computational cost, i.e. from the same points used for deriving the contribution

to the sample mean and/or scatter-plots. The proposed approach effectively instructs the analyst on

how to achieve a targeted reduction of the variance, by operating on the extremes of the input

parameters’ ranges. The approach is tested against a known benchmark for sensitivity studies, the

Ishigami test function, and a numerical model simulating the behaviour of a water hammer effect in a

piping system.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let us consider a simulation model represented by an input/
output function Y¼G(X), where Y is a scalar model output and
X¼(X1,X2,y,Xn) defines the generic vector of n input parameters.
The values of the model parameters are not perfectly known; in
other words, they are affected by some uncertainty. Therefore,
although it is not the case, each input can be considered as a
random variable characterized statistically by its probability
density function pi(Xi). The model output Y can also be thought
as a random variable; the estimation of its pdf is the objective of
uncertainty analysis and is carried out by evaluating the function
G(X) on a sample of points generated from the pdf pi(Xi). The
analysis described here is in the context of deterministic models.
Probabilities have only been introduced to represent imprecision
about model parameter values.

Graphical sensitivity tools provide valuable information on the
relationship between uncertain model inputs and model outputs.
In 1989, Sacks et al. proposed the use of scatter plots, i.e.
projections on a two-dimensional plane of the hyper-surface
describing the input/output mapping [1]. A number of other
graphical techniques are discussed in [2–5]. In 1993, Sinclair [6]
introduced the contribution to the sample mean plot (CSM) which
was further developed by Bolado-Lavin et al. [7].

The idea behind CSM is to use a given random sample of the
input parameters—that is generally used for uncertainty analysis,
to draw conclusions about the sensitivity of the model output.
This paper presents an extension of CSM plots, called ‘‘contribu-
tion to sample variance plots’’ (CSV).

When investigating input–output relationship, CSV contains a
considerable higher amount of information than that provided by
standard global sensitivity indices [8]. Once the most important
input has been detected, global sensitivity indices do not inform
the analyst about how to act operatively in order to reduce the
range of uncertainty of the important input for a given target
reduction of the output variance. Contrarily, CSV does give us the
amount of the variance reduction that would be achieved for any
arbitrarily chosen restriction of the input uncertainty range.

The CSV measure is defined and its properties are described in
Section 2. The interpretation of CSV is given in terms of change of
variance that can be achieved by trimming the range of the input
parameters in Section 3. The CSV plot can use the same sample
points utilized for the CSM, for the scatter-plots, and for uncer-
tainty analysis in general. Therefore, new information can be
obtained without additional model evaluations. As the CSM is a
powerful tool to identify local regions of the input space that
contribute substantially to the mean value of the model output,
the CSV is powerful to localize areas where the contribution to the
variance of the model output is considerable.

The theoretical results are shown on the Ishigami test function
in Section 4. The CSV technique is also applied to a numerical
model simulating the behaviour of a water hammer in a pipeline.
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The model is described in Section 5 and the results of CSV and the
comparison with the results from CSM are shown in Section 6.

Table 1 presents notation used throughout the article.

2. The contribution to the sample variance plot

Let us recall the definition of CSM for a given input Xi [7]:
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where qA[0,1], E(Y) is the mean value of the model output, Fi
�1(q)

is the inverse cumulative distribution of Xi at quantile q. The
multiple integral in (1) is computed on the range [�N,N] for all
input parameters except for Xi, for which the range is
[�N,Fi

�1(q)].
CSMXi(q) is plotted on the [0,1]2 space: q is a point on x-axis

representing a fraction of distribution range Xi, and CSMXi (q) is a
fraction of the output mean corresponding to the values of Xi

smaller or equal than its q-quantile. By definition, CSMXi (0)¼0
and CSMXi (1)¼1.

The CSV for the variable Xi (CSVXi) is defined similarly to CSM:
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where qA[0,1], V(Y)—variance of the model output, Fi
�1(q) is the

inverse cumulative distribution of Xi at quantile q. The multiple
integral in (2) is computed on the range [�N,N] for all input
parameters except for Xi, for which the range is [�N,Fi

�1(q)].
CSVXi is also plotted on the [0,1]2 space, where CSVXi(q) is a

fraction of the output variance corresponding to the values of Xi

smaller or equal than its q quantile. Also for the CSV holds
CSVXi(0)¼0 and CSVXi(1)¼1. It is important to note that the CSV
is defined in (2) as a contribution to variance with respect to
constant mean E(Y) over the full range of all parameters.

The CSM allows the analyst to identify the effect of each model
input on the average of the model output for given percentiles
within its uncertainty range; the CSV does the same for the
variance.

Graphical tools provide useful insights into the I/O relationship
using reasonably low number of model simulations. CSV plots can
be placed side by side to scatter-plots and to CSM plots at no extra

computational cost, i.e. using the simulations already carried out
for the scatter-plot (and the CSM).

Given a set of N sample points (xj1,xj2,y,xjn), j¼1,2,y,N and
the corresponding model output values yj, the CSV for input Xi can
be computed using the following procedure:

1. Compute the output sample mean Ym and transform each
observation (y1,y2,y,yN) by subtracting the mean value Ym:
ytj¼yj�Ym, j¼1,2,y,N. The transformed output Yt has zero
mean value.

2. Sort in ascending order the sample of input Xi (xi
(1),xi

(2), y, xi
(N))

and the corresponding set of the transformed outputs ytj,
obtaining a series (yt(i,1), yt(i,2), y, yt(i,N)).

3. The CSV at q quantile for the input parameter Xi is computed as

CSVXi
ðqÞ ¼

P qNb c
j ¼ 1 yt2

ði,jÞPN
j ¼ 1 yt2

ði,jÞ

, qA 0,1½ � ð3Þ

where qN is the largest integer not greater than qN.
The CSV for input Xi is obtained by plotting the CSVXi(q) against

the cumulative distribution function of Xi. The plot consists of
pairs (Fi(xi), CSVXi(Fi(xi)) for each sample point xi of Xi.

3. Interpretation of the CSV plot

Both CSM and CSV are tools to estimate the contribution to the
sample mean or sample variance of a particular range of input
parameter values. If CSM or CSV are close to diagonal, it indicates
that the contribution to the mean or to the variance is equal
throughout the range of the input parameter. The CSV value at
point q¼0.1 provides an estimate of the model output variance
due to the 10% of the smallest values of the input parameter.
Where the CSV curve is steep, the contribution to the sample
variance is large (variance is larger than on average). Where CSV
curve is flat, contribution to the sample variance is small (var-
iance is smaller than on average). Similar considerations are valid
also for the CSM plot when referring to the contributions to the
sample mean.

The CSV plot is a useful tool to analyse the effect of reduced
range of an input parameter to the variance of the model output.
Further, we will develop a relationship between input parameter
range reduction and change of the model output variance. Let us
consider a standard setting with input parameter Xi having
probability density function pi(xi) over [�N,N]. In the new
setting, the range of Xi is reduced to [u,z], �NouozoN,
having probability density function pi

n(xi). It can be shown that

pn
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u piðvÞdv
ð4Þ

The variance V(Yn[u,z]) in the new setting (range of the input
parameter Xi is [u,z]) is computed as
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The variance (5) defines variance of the model output with the
reduced range of the parameter Xi, but with respect to constant
mean E(Y) over the full range of all parameters. Further

Table 1
Notation.

n Number of parameters

N Sample size

Xi Model parameter i

Y Model output value

V( � ) Variance

E( � ) Mean value

p( � ) Probability density function

F( � ) Cumulative distribution function

G( � ) Model function

CSMXi( � ) Contribution to sample mean for parameter Xi

CSVXi( � ) Contribution to sample variance for parameter Xi

q quantile
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