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a b s t r a c t

The finite element method is applied to the sensitivity analysis of a natural frequency of a general beam

carrying a lumped mass with both translational and rotary inertias. By virtue of the characteristics of

the shape functions of a higher-order finite beam element of three degrees of freedom per node

(namely, the translation, rotation and curvature), successfully formulated is a closed-form solution of

the frequency sensitivity with respect to the attachment point of the mass. More importantly, by using

the same element model, the first-order derivative of a natural frequency can be evaluated readily with

the essential nodal displacements. Numerical results show that the sensitivity can be achieved with

excellent precision.

For practical calculation of the frequency sensitivity, however, a further investigation is performed

with use of the classical finite beam element of two degrees of freedom per node (i.e., the translation

and rotation). Two approaches are provided for the curvature approximation at the mass-attached

point. Comparison of numerical solutions from the uniform and linearly tapered beams illustrates that

the frequency sensitivity can only be appropriately estimated in a more refined mesh scheme with the

commonly-used beam element.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The vibration problem involving beam-like structures with
lumped (or concentrated) mass attachments arises frequently in
civil structures, marine industry and mechanical engineering. In
the past decades, the transverse vibration of a beam with one or
more lumped masses attached in its span had been exhaustively
studied due to its importance to industry [1–5]. In general, the
vibration solution of a beam with a simple geometric section is
gained by using analytical methods, such as the frequency
determinant method or the Laplace transform method with
consideration of the compatibility conditions at the attachment
points of the lumped masses [1–5]. For a more complicated beam
with the variable cross section, e.g., a generally tapered beam,
acquisition of the natural frequency and the mode shape has to
resort to the numerical approaches, like the finite element (FE) or
Rayleigh–Ritz methods, etc. [6–8].

It is widely recognized that the frequency optimization is of
great importance in the design of machines and structures
subjected to dynamic loadings. In practical situations, moving a
lumped mass around may be an interesting and effective way to
control the dynamic properties of a structure if loaded with
lumped masses, for example shifting a natural frequency away

from the undesirable resonant region or setting up a desired
resonant frequency gap [9]. Thus, frequency optimization of the
beam-mass system with respect to the locations of lumped
masses has always been a major concern of design engineers.
For successively and efficiently performing the optimization
procedure, the frequency sensitivity to the position of a mass
attachment should first be obtained with good accuracy. With
this sensitivity information, one can modify the mass position on
purpose. Otherwise, adjustment of the mass-attached position
has to be performed via a trial-and-error process. However, the
related frequency sensitivity analysis has not yet been investi-
gated sufficiently, especially with simultaneous inclusion of all
the inertial effects of a lumped mass.

In many of the earlier literature, only the translational inertia
of a lumped mass (or called a point mass) is concerned with in the
vibration studies, whereas the rotary inertial effect, as a special
feature of a lumped mass, is mostly neglected [3–5]. However,
just as is pointed out in Refs. [1,2], the rotary inertia due to a
lumped mass may impose a considerable influence upon the
dynamic properties of a mass-loaded structure, especially for the
higher-order vibration frequencies and modes. In some cases the
rotary inertia may be much more important than the translational
inertia of a lumped mass. For this reason, it should be involved in the
position optimization of lumped masses for a beam- or plate-mass
structure.

So far, there were only a few publications available on the
frequency sensitivity formulation with respect to the location of a
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lumped mass in a system, and the analysis had primarily been
focused on the transverse inertia (or magnitude). Specifically,
Wang [10] applied a modal-based method to achieve a general
expression of the frequency derivative of an Euler–Bernoulli beam
by treating the impact of a lumped mass as an external excitation.
Oguamanam et al. [11] performed the frequency sensitivity by
means of the generalized Rayleigh’s principle. Wang et al. [9]
derived the sensitivity of a beam or plate based on the properties
of the usual shape functions of the relevant finite elements.
Although previous investigations have evidently shown that the
rotary inertia of a lumped mass is also of great importance in the
vibration analysis, it appears that the related sensitivity analysis
to its position has not been appropriately explored in the open
literature. This situation has been motivating the present author
to investigate this problem with inclusion of both inertias of a
lumped mass. More recently, an exact expression of the frequency
sensitivity to the mass-attached position has been properly
presented for a beam-mass system [12]. The sensitivity formula-
tion is developed by virtually introducing additional degrees of
freedom (DOFs) at the mass-attached point. However, in evalua-
tion of the frequency sensitivity the analytical solution of the
beam deflection has to be taken because the curvatures at the
attachment position are typically required in the sensitivity
expression. Obviously, such an exact solution may greatly prevent
the frequency sensitivity from wide application in practical
engineering, particularly, for large beam-like structures or com-
plex sections of beams. Because of this limitation, this research is
undertaken to provide an easy and direct approach for developing
as well as calculating the design sensitivity for a general vibrating
beam with the discrete method. Usually, when the cross-section
of a beam is of non-uniformity, e.g., for a double-tapered beam,
the solution has to be achieved by numerical approaches, most
commonly by the FE method.

In the present work, a higher-order finite beam element model
of two-node, three DOFs per node (3DPN) [4], namely, the
transverse displacement, rotation (or slope) and curvature, is
employed instead of the conventional finite beam element of
two-node, two DOFs per node (2DPN) for the frequency sensitiv-
ity analysis. This is because the second derivative of the cubic
polynomial displacement function of the 2DPN beam element, or
the curvature, which is desirable in the present derivation with
both inertias of a lumped mass under consideration, is intrinsi-
cally discontinuous at the inter-element node [4,13]. Conse-
quently, this significant disadvantage of the shape functions
adversely affects the correct derivation of the frequency sensitiv-
ity with use of the FE method suggested by the present author
and coworkers [9]. With use of the 3DPN element, the discrete
method on the FE basis can simply be used for development of the
frequency sensitivity. Most importantly, within the scope of the
same beam element model the sensitivity computation can be
easily accomplished since the curvature is just one of the essential
nodal DOFs of the 3DPN element and is then accessed directly.
Additionally, the continuity of the curvature can be automatically
guaranteed at an inter-element node with no attachment of a
lumped mass.

In fact, the higher-order beam elements have long been
utilized for vibration analysis of non-uniform beams [4,14,15].
It is a common knowledge that the higher-order beam element is
superior to the lower-order element in the natural frequency
extraction, especially for higher-order ones. In this work, the major
attention is paid to the efficient evaluation of the frequency
sensitivity of a beam-mass system except for its successful deriva-
tion. First, the FE method combined with the 3DPN model afore-
mentioned is used for the sensitivity formulation. Based only on
the characteristic features of the shape functions of quintic poly-
nomials for the 3DPN element, which is higher enough for the

present problem, a closed-form solution of the frequency sensitiv-
ity with respect to the mass-attached point is developed readily.
Next, with use of the same element, the design sensitivity estima-
tion is numerically executed for a uniform or linearly tapered beam
carrying lumped masses. Numerical results show that the fre-
quency sensitivity can be obtained rather precisely.

Although the 3DPN beam element is well suited to the
sensitivity computation when the translational and rotary inertias
of a lumped mass are both involved in the analysis, introducing
an additional DOF of the curvature at a mesh node also makes the
FE analysis quite a bit complicated in comparison with the
classical 2DPN beam element. It is well known that the curvature
of the transverse displacement function of a beam is discontin-
uous across the mass-attached point when the rotary inertial
effect of the lumped mass is considered [1,2,5]. Therefore, two
DOFs of the curvature have to be defined separately at a node
with a mass attachment such that the assembly of the mass and
stiffness matrices of the beam itself is highly related to the
lumped mass position. For the purpose of efficient evaluation of
the frequency sensitivity, further efforts are needed to find out an
effective approach for using the 2DPN element, and a more
precise calculation of the curvature should be delivered. Two
alternative schemes are devised in this study to approximate the
curvatures at a node with this element model. The applicability of
the proposed methods is verified with slender beams of the
uniform or linearly tapered cross-section, and the resultant
accuracy of the frequency sensitivity is illustrated. Comparison
of numerical solutions shows clearly that the sensitivity can, in
general, be adequately estimated with use of the 2DPN beam
element in a more refined FE discretization, and the results are
generally more accurate only to the lower-order frequencies.

2. Frequency sensitivity formulation

In this section the FE method is briefly described for derivation
of the frequency sensitivity of a beam-mass system with respect
to the attachment position of a lumped mass with both the
inertial effects included. It will be observed that this procedure
is a natural development of the previous work [9] by applying
formally the concept of shape function of a higher-order beam
element.

2.1. Foundation of the FE method for the frequency sensitivity

analysis

Consider a non-uniform beam of overall length L carrying a
lumped (nonstructural) mass of the translational inertia M (mag-
nitude) and the rotary inertia J (rotary moment of inertia about
the neutral axis of the beam) at an intermediate arbitrary point
x¼b measured from the left end of the beam, as shown in Fig. 1.
Suppose that the beam-mass system is discretized with an
adequate FE mesh. Then, from the equation of motion for the
free undamped vibration of the beam, the characteristic equation
of the natural frequency is represented by:

½K��o2
i ½M�

� �
ffgi ¼ f0g ð1Þ

Fig. 1. A cantilever beam carrying a concentrated mass.
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