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a b s t r a c t

The moment-independent sensitivity analysis (SA) is one of the most popular SA techniques. It aims at

measuring the contribution of input variable(s) to the probability density function (PDF) of model

output. However, compared with the variance-based one, robust and efficient methods are less

available for computing the moment-independent SA indices (also called delta indices). In this paper,

the Monte Carlo simulation (MCS) methods for moment-independent SA are investigated. A double-

loop MCS method, which has the advantages of high accuracy and easy programming, is firstly

developed. Then, to reduce the computational cost, a single-loop MCS method is proposed. The later

method has several advantages. First, only a set of samples is needed for computing all the indices, thus

it can overcome the problem of ‘‘curse of dimensionality’’. Second, it is suitable for problems with

dependent inputs. Third, it is purely based on model output evaluation and density estimation, thus can

be used for model with high order (42) interactions. At last, several numerical examples are

introduced to demonstrate the advantages of the proposed methods.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Sensitivity analysis (SA) is a study of how ‘‘uncertainty in the
output of a model (numerical or otherwise) can be apportioned to
different sources of uncertainty in the model input’’ [1]. It is a very
useful tool for model simplification, importance ranking, risk reduc-
tion and other purposes. During the past few decades, a variety of SA
techniques have been proposed by researchers for different
purposes [2–9]. Among these techniques, the variance-based one
developed by Sobol [3] and Homma and Saltelli [4] and the
moment-independent one developed by Borgonovo [9] are the most
popular.

The variance-based SA aims at distributing the model output
variance to different sets of model inputs by looking at the entire
distribution ranges of those inputs. It is global, quantitative and
model free, thus has been studied widely by practitioners in the
past years. Nowadays, there have been a lot of smart methods
available for computing the variance-based SA indices [10–13].

The moment-independent SA focuses on finding those inputs
that, if fixed at their distribution ranges, will lead to the greatest
shift in the probability density function (PDF) of model output on
average. It is also global, quantitative and model free, and
additionally, it is moment-independent, thus attracts more and
more attentions of practitioners recently. During the past few
years, some efforts have been devoted to developing efficient and
robust methods for computing the moment-independent SA

indices (also called delta indices). In the original paper, Borgonovo
proposed the PDF-based method for computing the delta
indices [9]. This is a computationally expensive double-loop
simulation method, and also the precision of estimates suffers
from calculating the intersection points of the unconditional and
conditional PDF of the model output. To improve the accuracy of
the estimates, Liu developed the CDF-based method, however, as
pointed by Liu ‘‘for a computationally intensive model, when the

total computational time is mainly due to the time of running the

model, the improvement of the computational efficiency by the CDF-

based method can be negligible’’ [14]. In another paper, Borgonovo
proposed the emulation method for expressing the input–output
relationship by metamodel, and then computing the delta indices
based on the metamodel [15]. Both the State Dependent Para-
meter (SDP) [12,16,17] and kriging emulator are investigated.
This method can drastically reduce the computational cost, thus
receives more and more attentions in the area of SA. The estimate
precision of these methods mainly depends on the metamodel. If
the input–output mapping contains high order interactions, the
metamodel may often fail to capture the structure feature of the
model. In Ref. [18], Castaings used the quadrature method to deal
with the one dimensional integral given in the definition of delta
indices for individual input. Compared with the PDF-based and
CDF-based methods, this method is computationally more
efficient. However, it is still a double-loop method, and the
computational cost increases with the number input variables.
Despite these works by different researchers, compared with the
variance-based SA indices, robust and efficient methods are less
available for computing the delta indices.
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In this paper, we firstly propose a double-loop Monte Carlo
simulation (MCS) method for computing the delta indices. This
method is purely based on model evaluation and univariate
density estimation, and it has the advantages of high-accuracy
and usability, but its computational cost is unacceptable for
engineering models. Then, to substantially improve the computa-
tional efficiency, a single-loop MCS method is developed. This
single-loop MCS method has several advantages. First, only a set
of samples are needed for calculating all the delta indices, thus it
is computationally efficient and overcomes the problem of ‘‘curse
of dimensionality’’. Second, it is suitable for models with depen-
dent inputs. Thirdly, compared with the emulation method, it is
based purely on model evaluation and density estimation, thus
can be employed to deal with the problem with high order (42)
interactions terms.

The rest of this paper is organized as follows. Section 2 reviews
the original definition of the delta indices. Section 3 proposes the
double-loop MCS method and Section 4 develops the single-loop
MCS method for computing the delta indices. Section 5 introduces
three test examples to demonstrate the advantages of the
proposed methods. Section 6 gives conclusions.

2. Review of the moment-independent sensitivity analysis
technique

Consider a computational model represented by Y¼g(X),
where X¼(X1,X2,y,Xn) is the vector of random input variables,
Y is the model output of interest. The joint PDF of X is denoted as
fX(x), and the marginal PDF of Xi (i¼1,2,y,n) can be obtained as
following:

f Xi
ðxiÞ ¼

Z
. . .

Z
f XðxÞ

Yn

k ¼ 1,ka i

dxk ð1Þ

To measure the effect of the uncertainty of an individual input
Xi on the PDF fY(y) of model output Y, Borgonovo proposed the
following moment-independent SA index (also named as delta
index) for Xi [9]:

di ¼
1

2
EXi
ðsðXiÞÞ ¼

Z
sðXiÞf Xi

ðxiÞdxi ð2Þ

where s(Xi) is the measure of the shift between the unconditional
PDF fY(y) and conditional PDF f Y9Xi

ðyÞ on Xi of the model output Y,
and its expression is:

sðXiÞ ¼

Z
9f Y ðyÞ�f Y9Xi

ðyÞ9dy ð3Þ

Further, Borgonovo defined the moment-independent SA
index for a group of inputs R¼ ðXi1 ,Xi2 ,. . .,Xir Þ as follows:

di1 ,i2 ,...,ir ¼
1

2
ERðsðRÞÞ ¼

1

2

Z
f Xi1

,Xi2
,...,Xir
ðxi1 ,xi2 ,. . .,xir Þ

�

Z
9f Y ðyÞ�f Y9Xi1

,Xi2
,...,Xir
ðyÞ9dy

� �
dxi1 dxi2 . . .dxir ð4Þ

where f Y9Xi1
,Xi2

,...,Xir
ðyÞ is the PDF of model output Y conditional on

R, f Xi1
,Xi2

,...,Xir
ðxi1 ,xi2 ,. . .,xir Þ is the joint PDF of R, and it can be given

by

f Xi1
,Xi2

,...,Xir
ðxi1 ,xi2 ,. . .,xir Þ ¼

Z
. . .

Z
f XðxÞ

Yn

k ¼ 1,ka i1 ,i2 ,...,ir

dxk ð5Þ

In Ref. [9], Borgonovo derived five properties of di, which are
shown in Table 1. Property no.1 indicates that the lower bound of di

is zero, and the upper bound is unity. Property no. 2 shows that, if Y

is independent of Xi, then di equals to zero. This property is obvious
since f Y ðyÞ ¼ f Y9Xi

ðyÞ as Y is independent of Xi. Property no. 3
indicates that delta index of all input variables equals unity.

Property no. 4 indicates that if Y is dependent on Xi but independent
of Xj, then dij¼di, and vice verse.

Let

dj9i ¼
1

2

Z Z Z
9f Y9Xi

ðyÞ�f Y9Xi ,Xj
ðyÞ9dyÞf Xi ,Xj

ðxi,xj

� �
dxidxj ð6Þ

Then from property no. 5, dirdijrdiþdj9i holds. This property
provides bounds for the possible values of dij. The geometrical
interpretation of this property can be found in Ref. [9]. di can be
seen as the average distance measure between fY(y) and f Y9Xi

ðyÞ.
Similarly, dj9i is that between f Y9Xi

ðyÞ and f Y9Xi ,Xj
ðyÞ, dij measures

the average distance between fY(y) and f Y9Xi ,Xj
ðyÞ. dijrdiþdj9i is

nothing but the triangle inequality. If Y is independent of Xi,
dj9i¼0, then by property no. 5, di¼dij holds. This conclusion is
consistent with property no. 4. In this case, the vector from fY(y)
to f Y9Xi

ðyÞ coincides with the vector from fY(y) to f Y9Xi ,Xj
ðyÞ.

Up to now, we have briefly reviewed the delta indices and
their properties. In the next section, we introduce the double-loop
MCS method for computing di.

3. Double-loop Monte Carlo simulation method

From Eq. (2), we know that

di ¼
1

2
EXi
ðsðXiÞÞ ð7Þ

where s(Xi) can be derived to be:

sðXiÞ ¼

Z
9f Y ðyÞ�f Y9Xi

ðyÞ9dy

¼

Z
f Y ðyÞ

f Y9Xi
ðyÞ
�1

�����
�����f Y9Xi

ðyÞdy

¼ EY9Xi

f Y ðyÞ

f Y9Xi
ðyÞ
�1

�����
�����

 !
ð8Þ

where the subscript Y9Xi indicates that the expectation is taken
with respect to the conditional PDF f Y9Xi

ðyÞ.
Eqs. (7) and (8) indicate that di can be expressed in the form of

double-loop expectation, thus can be estimated by the double-
loop MCS method. Similarly, for a set of input variables R, we
have:

di1 ,i2 ,...,ir ¼
1

2
ERðsðRÞÞ ð9Þ

where

sðRÞ ¼
R
9f Y ðyÞ�f Y9Xi1

,Xi2
,...,Xir
ðyÞ9dy

¼

Z
f Y ðyÞ

f Y9Xi1
,Xi2

,...,Xir
ðyÞ
�1

�����
�����f Y9Xi1

,Xi2
,...,Xir
ðyÞdy

¼ EY9Xi1
,Xi2

,...,Xir

f Y ðyÞ

f Y9Xi1
,Xi2

,...,Xir
ðyÞ
�1

�����
�����

 !
ð10Þ

Eqs. (9) and (10) indicate that di1 ,i2 ,...,ir can also be expressed as
a double-loop expectation, thus can also be estimated by a
double-loop MCS method.

It is shown by Eqs. (7)–(10) that, for computing di by the
double-loop MCS method, one needs to estimate the PDF fY(y) and
f Y9Xi
ðyÞ, and for computing di1 ,i2 ,...,ir , one needs to estimate fY(y) and

f Y9Xi1
,Xi2

,...,Xir
ðyÞ. Since fY(y), f Y9Xi

ðyÞ and f Y9Xi1
,Xi2

,...,Xir
ðyÞ are univari-

ate density functions, all of them can be easily estimated by the
density estimation methods. In this paper, we only consider the
calculation of the delta indices of single input variable, i.e., di, thus
we only need to estimate fY(y) and f Y9Xi

ðyÞ.
The density estimation methods can be divided into two

groups: the parametric one and the nonparametric one. The
precondition of using the parametric density estimation (PDE)
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