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a b s t r a c t

Finite element (FE) response sensitivity analysis is an important component in gradient-based struc-

tural optimization, reliability analysis, system identification, and FE model updating. In this paper,

the FE response sensitivity analysis methodology based on the direct differentiation method (DDM) is

applied to a bounding surface plasticity material model that has been widely used to simulate

nonlinear soil behavior under static and dynamic loading conditions. The DDM-based algorithm is

derived and implemented in the general-purpose nonlinear finite element analysis program OpenSees.

The algorithm is validated through simulation of the nonlinear cyclic response of a soil element and a

liquefiable soil site at Port Island, Japan, under earthquake loading. The response sensitivity results are

compared and validated with those obtained from Forward Finite Difference (FFD) analysis. Further-

more, the results are used to determine the relative importance of various soil constitutive parameters

to the dynamic response of the system. The DDM-based algorithm is demonstrated to be accurate and

efficient in computing the FE response sensitivities, and has great potential in the sensitivity analysis of

nonlinear dynamic soil-structure systems.

& 2013 Published by Elsevier Ltd.

1. Introduction

Finite element (FE) response sensitivity analysis is an essential
ingredient of gradient-based optimization methods and is
required in structural optimization, system identification, relia-
bility, and FE model updating [1–4]. Furthermore, the sensitivity
analysis results may be used to propagate the material and
loading uncertainty to the structural responses of interest. In
addition, FE response sensitivities provide invaluable insight into
the effects of system parameters on, and their relative importance
to, the system response [5]. Several methods are available for
response sensitivity analysis, including the Finite Difference
Method (FDM), the Adjoint Method (AM), the Perturbation
Method (PM), and the Direct Differentiation Method (DDM)
[6–11]. The FDM is the simplest method for response sensitivity
computation, but is computationally expensive and can be nega-
tively affected by numerical noise. The AM is efficient for linear
and non-linear elastic systems, but is not a competitive method
for path-dependent (i.e., inelastic) problems. The PM is computa-
tionally efficient but generally not very accurate. The DDM, on the
other hand, is a general, accurate and efficient method that is
applicable to any material constitutive model. The DDM-based

response sensitivity analysis methodology shows great promise
in the analysis of large and complex structural or geotechnical
systems.

However the DDM method requires analytical derivations and
their computer implementation to differentiate the system
responses with respect to sensitivity parameters. Over the past
decade, the DDM-based sensitivity analysis method has been
actively developed and implemented in an open source FE
analysis framework known as OpenSees [12]. The DDM has been
developed for various constitutive models including uniaxial
materials, three-dimensional J2 plasticity models and pressure-
independent multi-yield surface J2 plasticity models [13]. These
models can be used to simulate truss and beam components in
structures, and nonlinear clay behaviors. Detailed descriptions of
the DDM-based sensitivity analysis methodology implemented in
OpenSees can be found in the literature [14–17].

Yet, the method has not been formulated for sandy soils,
which usually exhibit different behavior from clayey soils, such
as pressure-dependent cyclic behaviors, shear-induced volumetric
dilation and contraction, as well as liquefaction under low effective
confinement. The objective of this paper is to extend the DDM-based
sensitivity analysis to a class of bounding surface models for
sandy soils. The bounding surface model has been widely used
and proven to be an effective and robust model to simulate the
behaviors of sandy materials under cyclic and seismic loading condi-
tions [18–21]. The DDM-based sensitivity algorithm is particularly
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efficient for strongly nonlinear, large-scale problems with a large
number of sensitivity parameters. Geotechnical problems modeled
using the bounding surface model are such examples. Thus devel-
oping a DDM-based sensitivity algorithm for the bounding surface
model will allow us to solve a large number of challenging
geotechnical problems, such as the earthquake-induced liquefaction
phenomenon in sandy soils. When combined with the existing
sensitivity analysis framework for clayey soils and soil-structure
systems, the DDM-based sensitivity analysis may be readily applied
to real soil-foundation-structure interaction systems [17].

This paper provides a summary of the bounding surface model
and detailed DDM formulation, followed by examples to validate
the DDM-based FE response sensitivity algorithm. The algorithm
is applied to study the sensitivity of liquefied ground responses
observed at Port Island in Japan under a real earthquake scenario.
The results are further used to identify the relative importance of
the soil parameters to the ground surface response.

2. Numerical implementation of a bounding surface model

The bounding surface model presented herein was developed
for simulating the pressure-dependent behaviors of sandy soils
under complex loading conditions [18,19]. Compared with the
classical plastic theory using yield surfaces, flow rules and hard-
ening laws to characterize the plastic behavior of a material, this
model generalizes the yield-surface-based plasticity theory by
defining a bounding surface or a failure surface. The plastic
deformation within the bounding surface is determined by a
varying plastic modulus, which is defined as a continuous func-
tion of the distance from the current stress to a properly defined
‘image’ stress on the bounding surface. The model was further
improved to incorporate the basic premises of critical-state soil
mechanisms to allow for the realistic modeling of the shear-
induced volumetric changes (i.e., contraction or dilation) in either
a loose or a dense state, and the phase transition from one state to
another [20,21], which is the basis for modeling the liquefaction
behavior of sandy soils. In practice, this model has been imple-
mented in some commercial softwares, and verified using exten-
sive experimental data and real earthquake records [22].

2.1. Constitutive formulation

The bounding surface model employs a stress ratio invariant,
defined as R¼ 1

2 r:r
� �1=2

, where r is the stress ratio of the
deviatoric stress s over pressure p, i.e., r¼ s

p, and the notation
‘‘:’’ is the double contraction between two second-order tensors,
i.e., A:B¼AijBij. Accordingly, an ultimate failure surface, or a
failure-bounding surface, is defined as

bf ¼ R�Rf ¼ 0 ð1Þ

where the parameter Rf is the stress ratio invariant at the failure
surface, which is related to the corresponding classical critical
state triaxial parameter M by Rf ¼M=

ffiffiffi
3
p

. Stress is not allowed to
trespass the failure-bounding surface f̂ ¼ 0. Similarly, the max-
imum prestress memory bounding surface is defined as:

f ¼ R�Rm ¼ 0 ð2Þ

where Rm is a history parameter providing the maximum pres-
tress level. The two bounding surfaces f̂ ¼ 0 and f ¼ 0 are
combined to compute the plastic modulus.

Inside the failure-bounding surface, the hypoelastic response,
i.e., the elastic strain rate _ee, is defined as the summation of

deviatoric strain _ee and volumetric strain tr _ee:
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where G and K are the pressure-dependent elastic shear and bulk
moduli, respectively. Similarly, the hypoplastic response, i.e., the
plastic strain rate _ep, can be written as

_ep
¼

1

Hr
nDþ
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3Kr
I
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where Hr and Kr are, respectively, the plastic shear and bulk
moduli associated with the deviatoric stress ratio _r; parameters
Hp and Kp are, respectively, the plastic shear and bulk moduli
associated with the pressure rate _p. The vectors nD and nN are unit
vectors in stress space along the deviatoric part of _ep and the
associated deviatoric loading direction, respectively. In this paper
both nD and nN are taken to be the same as the unit vector normal
to the maximum prestress memory bounding surface f ¼ 0 (i.e.,
vector n in Fig. 1). The pm is the maximum value of mean pressure
p experienced in past loading. The Heaviside step function
h(p�pm) and the Macaulay brackets /S around _p indicate that
the plastic mechanism due to _p operates only when p¼pm and
_p40. As shown in Fig. 1, the previous unloading stress point
(i.e., a in Fig. 1), the current deviatoric stress ratio r and a properly
defined ‘image’ stress r on the maximum prestress memory
bounding surface f ðrÞ ¼ 0 are combined to determine variable
plastic moduli Hr and Kr, which are continuous functions of the
distance r from a to r (r¼ :r�a:2) and the distancer from a to r
(r¼ :r�a:2) [18]. It is worth mentioning that for practical
applications, the shear-induced plastic strains usually dominate.

Therefore, the second term in Eq. (4), i.e., 1
Hp

rþ 1
3Kp

I
� �

hðp�pmÞ

/ _pS, is neglected in this paper for simplicity. The plastic strain

rate _ep can be simplified as:

_ep
¼

1

Hr
nþ

1

3Kr
I

� �
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2.2. Numerical implementation

The numerical implementation of the constitutive model
employs an explicit algorithm for computing the plastic moduli
Hr and Kr. In this section, the discretized version of the constitu-
tive model is presented in detail. The variables with subscript
n denote the ones at the last time step at discrete time tn.
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Fig. 1. The bounding surface model in deviatoric stress ratio space.
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