Optimal choice of monetary policy instruments under velocity and fiscal shocks

Rajesh Singh a,1, Chetan Subramanian b,⁎

a Department of Economics, 271 Hyed Hall, Iowa State University, Ames IA 50011–1070, United States
b Department of Economics, 423, Fronczak Hall, SUNY Buffalo, NY-14260, United States

ARTICLE INFO

Article history:
Accepted 8 February 2009

JEL classification:
E32
E42
E52

Keywords:
Interest rate targeting
Monetary targeting
Optimal monetary policy

ABSTRACT

This paper revisits the Poole’s instrument problem in a closed economy setting with reduction in variability of aggregate output as the yardstick, showed that shocks indeed mattered for the choice of an appropriate monetary policy instrument. The basic conclusion was that a fixed monetary aggregate better stabilizes output by allowing offsetting interest rate movements under demand (IS) shocks, whereas a fixed interest rate insulates the real side of the economy by letting the money supply adjust to the shocks originating in the money market.

This paper revisits the Poole’s instrument problem in a closed economy that faces nominal rigidities in the form of Calvo style staggered price adjustment. Within this setting, we study an economy that experiences demand (government expenditure) and monetary (velocity) shocks. For each shock, we welfare-rank three simple rules, namely, interest rate targeting, monetary targeting, and the Taylor rule, by comparing them with the optimal policy under discretion. The welfare metric, expressed in terms of the output gap (defined as the difference between the actual and the efficient level of output) and inflation is obtained as a quadratic approximation of the household’s utility. Our results identify interest rate targeting as the best rule under velocity shocks, whereas monetary targeting performs best under fiscal shocks. The performance of these rules vis-à-vis discretion however crucially depends on the intertemporal elasticity of consumption substitution. Specifically, for high (low) elasticities we find that interest rate rule under velocity shocks and monetary targeting under fiscal shocks perform better (worse) than discretion.

A key feature of our model is the introduction of a stochastic cash-in-advance constraint within the New Keynesian framework of Clarida, Galí, and Gertler (1999). The standard model as exemplified in Clarida, Galí, and Gertler (1999) is a money-in-the-utility function (MIUF) model with preferences separable in consumption and real balances. Changes in money therefore play a limited role in determining the dynamics of real variables. We follow Alvarez, Lucas, and Weber (2000), and introduce velocity shocks as fluctuations in the fraction of current income that households can utilize for current purchases. The cash-in-advance constraint implicitly taxes labor at a rate that fluctuates endogenously with nominal interest rates and shocks to the velocity of money. As a result, nominal interest rates as well as shocks to velocity now appear in the Phillips curve. Thus, complete price stability is not optimal under velocity shocks (akin to exogenous cost-push shocks). Additionally, the interest rate term in the Phillips curve, by raising the cost of stabilizing inflation in terms of output gap (i.e., the cost push effect), endogenously

1 Tel.: +1 515 294 0221; fax: +1 515 294 0221.
2 The choice of these two shocks is in the spirit of Poole’s analysis, which abstracts from productivity shocks since the ‘potential’ output is assumed to remain fixed. Moreover, many previous researchers have carefully examined the performance of optimal monetary policy and simple rules in the case of productivity shocks. Gali (2003), for example found the Taylor rule, by responding to the output gap and inflation, allows more flexibility in nominal interest rate adjustment and thus dominates the other two simple rules. Similar conclusions can be drawn in our framework.

⁎ Corresponding author. Tel.: +1 716 645 2121x426; fax: +1 716 645 2127.
E-mail addresses: r singh@iastate.edu (R. Singh), chetan@acsu.buffalo.edu (C. Subramanian).
generates an inflation/output gap trade-off. Consequently, complete price stability is never optimal.

Fiscal shocks, as in Ravenna and Walsh (2006), are introduced by assuming that the government spends a stochastic fraction of domestic output. Under our assumption, the more the economy produces the more the government spends (i.e., wastes). The output produced under a competitive equilibrium therefore differs from its efficient level that a planner will choose. Once this distortion is accounted for, as in Ravenna and Walsh (2006), fiscal shock not only affects the IS curve but also appears as a cost-push shock in the Phillips curve. An inflation-output gap trade-off emerges and once again complete price stability is not optimal.

Our work is closely related to Gali (2003) who uses the standard MIUF framework with Calvo style staggered price and compares the optimal policy with the above three rules in a closed economy, but our MIUF framework with Calvo style staggered price and compares the complete price stability is not optimal.

Contrary to the popular notion, they only on the simple rules and does not compare them with the optimal policy. Importantly, we find that monetary targeting outperforms interest rate targeting for money demand shocks due to the inclusion of the distorting effect of money demand shocks.

Collard and Dellas (2005) carry out a similar exercise in a closed economy MIUF setup with Calvo style staggered prices where they compare interest rate targeting with monetary targeting for productivity, fiscal, and money demand shocks. Their paper however focuses only on the simple rules and does not compare them with the optimal policy. Contrary to the popular notion, they find that monetary targeting outperforms interest rate targeting for money demand shocks (modelled as preference shocks). The key to this result, is the non-separability of consumption, leisure, and real balances in the utility function. While there is greater stability of output and inflation under interest rate-targeting, it is still welfare dominated by monetary targeting due to the strong negative covariance between consumption and leisure under the latter. By contrast, monetary targeting, outperforms the Taylor rule in our model due the inclusion of the distortionary effect of fiscal shocks.

2. The model

The model consists of households, firms, and a government interacting in goods, asset, and labor markets. Households supply labor to firms and consume a composite good that can only be purchased with cash. Additionally, households can hold a risk free bond. Firms hire labor, produce, and sell differentiated goods to households and the government in monopolistically competitive goods markets. Households maximize the present value of expected utility, and firms maximize profits. It is assumed that the government’s preference for consuming differentiated goods are identical to that of the households.

In what follows, variables with capital letters denote their levels, bars over them denote steady states, and lower case letters denote their log deviations from steady state, respectively, i.e., $x = \ln(X) - \ln(\bar{X})$.

2.1. Households

A representative household consumes a composite consumption good, C_t, and values leisure, $1 - N_t$, where N_t is the time devoted to market employment. The household maximizes its expected present value of utility:

$$E_t \sum_{s=1}^{\infty} \beta^s \left[\frac{(C_t^{1-\sigma} - \frac{\varphi}{1-\sigma}) - \frac{\Pi_t}{1-\sigma} N_t^{1-\sigma}}{1 + \varphi} \right],$$

(1)

where φ is defined as

$$C_t = \left[\int_{0}^{\frac{\bar{C}}{\Pi}} \varphi^{-\epsilon} d\varphi \right]^{-\frac{1}{\epsilon}} \epsilon > 1,$$

(2)

and where C_t denotes the consumption of good i produced by a monopolistically competitive firm i; there is a unit measure of such firms. Under this specification ϵ governs the price elasticity for the individual goods. The optimal allocation of expenditure within each category of goods yields the demand function

$$C_u = \left(\frac{P_u}{P_t} \right)^{-\epsilon} C_t; \quad P_t = \left(\int_{0}^{1} \frac{P_1^{1-\epsilon}}{P_1^{1-\epsilon}} d\frac{1}{P_1^{1-\epsilon}} \right)^{\frac{1}{1-\epsilon}},$$

(3)

where P_t is the price of good i and P_i is the price index.

The household begins any period with assets in the form of money balances and riskless bonds carried over from the previous period. Asset markets open first, where the household rebalances its asset portfolio and pays lump-sum taxes to the government. The household’s accounting identity for the asset market transactions is given by

$$\hat{M}_t = M_{t-1} + R_{t-1}D_{t-1} - D_t - T_t,$$

(4)

where \hat{M}_t denotes the cash balances that household carries to the goods market; R_{t-1} is the gross nominal interest rate on bonds; T_t is lump-sum taxes paid to the government.

After the asset markets close, the household proceeds to the goods market to purchase a consumption basket C_t, the price of which is given by P_t. Following Alvarez, Lucas and Weber (2000), we assume that the household gets to use only a fraction $V_t \geq 0$ of the current income (wages plus dividends) to purchase consumption goods in the current period. The cash-in-advance constraint in period t becomes

$$P_t \ C_t \leq \hat{M}_t + V_t [W_t N_t + \Pi_t],$$

(5)

where W_t is the household’s nominal wage and Π_t are the profits from the firms. The remaining $(1 - V_t)$ fraction of period t income and the cash left after purchasing consumption goods constitutes the cash balances for the next period

$$M_t = (1 - V_t) [W_t N_t + \Pi_t] - P_t \ C_t + \hat{M}_t + V_t [W_t N_t + \Pi_t],$$

(6)
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات