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a b s t r a c t

Real world production planning is involved in optimizing different objectives while considering a spec-
trum of parameters, decision variables, and constraints of the corresponding cases. This comes from
the fact that production managers desire to utilize from an ideal production plan by considering a num-
ber of objectives over a set of technological constraints. This paper presents a new multi-objective pro-
duction planning model which is proved to be NP-Complete. So a random search heuristic is proposed to
explore the feasible solution space with the hope of finding the best solution in a reasonable time while
extracting a set of Pareto-optimal solutions. Then each Pareto-optimal solution is considered as an alter-
native production plan in the hand of production manager. Both the modeling and the solution processes
are carried out for a real world problem and the results are reported briefly. Also, performance of the pro-
posed problem-specific heuristic is verified by comparing it with a multi-objective genetic algorithm on a
set randomly generated test data.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Production planning is such a key issue that both directly and
indirectly influences on the performance of the facility. Different
approaches are proposed in the literature for production planning,
each of them has its own characteristics (Florian & Klein, 1971; Lee,
2004). For various cases, new models or algorithms are developed
till now (Chen, Feng, Kumar, & Lin, 2008; Kirca, 1990; Tey-
arachakul, Chand, & Ward, 2008; Woeginger, 2005). Few algo-
rithms consider the existence of maximum production capacity
(Bertrand & Van-Oijen, 1996; Florian & Klein, 1971; Sandbothe &
Thompson, 1990).

On the other hand, production managers usually desire to pro-
duce in a semi-fixed rate for different planning periods. A common
characteristic in the most production planning models is that they
do not pay attention to this requirement, and consequently their
optimal solutions are with lots of variations in batch size of differ-
ent periods. In recent years, various models are proposed to solve
this problem in order to satisfy managers in some extent. Most
existing models seek a way to determine an ideal production level
that variations of lot sizes are as small as possible in a narrow band
around this ideal level, as depicted in Fig. 1. This band is usually la-
beled as the ideal production band (Aryanezhad, Karimi-Nasab, &
Bakhshi, 2008). Some models in the literature attempt to force
some dummy objectives to the classic batch sizing models. Due

to the conflicts between different goals of an existing model, a
number of solution methods have been proposed in the literature
(Azoza & Bonney, 1990; Tsou, 2008). Some researchers tried to ob-
tain the narrowest ideal band as possible (Aryanezhad et al., 2008;
Karimi-Nasab & Aryanezhad, 2011). A few studies are aimed at
forcing their models to obtain an ideal production band limited
to the maximum production capacity. Fig. 1 shows an example of
the ideal level and ideal production band. In Fig. 1, it is assumed
that the dashed line in the ideal band is the ideal production level.

In Fig. 1, the forecasted demand (Dt) and smoothed batch size
x�t
� �

of t = 1, 2, . . . ,12 periods are plotted. It is noteworthy that a
fundamental assumption is that values of demands in each plan-
ning period is given or forecasted by a good method. The upper
dot line indicates the maximum production capacity. Another fun-
damental assumption is that the maximum production capacity of
all periods is constant.

One of the topics in literature is the relation between JIT and
batch size smoothing approaches. One of the requirements to pro-
duce in JIT framework is not to have large variations in market de-
mands (Ehrhardt, 1998; Lee, 2004). JIT is a production philosophy
that proposes to have the followings altogether as possible: (I) hav-
ing the minimum inventory volumes, (II) having the minimum
deviation from customer demand, (III) having the most smoothed
production plan over planning periods, (IV) utilizing from a
smoothed work load stream over machineries, and so forth. Now
for solving this dilemma and nearing to the philosophy of JIT, we
could do some of manipulations. For example, customers’ demand
could be met in maximum one period delay. In the other words, if
the demand of a period is less than the maximum production
capacity, that period should produce as JIT, but in other cases,
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the difference between demand and maximum production capac-
ity could be produced in the adjacent period. And the aim should
be not to use the later method as possible. All of these are because
of high shortage and holding costs. The high shortage costs would
be for the importance/attentions paid to customers. So these sce-
narios would depend on holding/shortage/delay/. . . costs, which
will be considered. Furthermore, factories not producing in the
framework of JIT, should not be worried about using the proposed
model.

These problematices forces us to use mathematical model in-
stead of decision making based on simple conditions to consider
different scenarios of production planning. When considering
some of the objectives such minimization of total cost, virtual dis-
tance from ideal smoothness, virtual distance from ideal JIT pro-
duction, etc. the complexity of the model increases because: (a)
it is asked to generate some of the Pareto-optimal solutions instead
of one unique solution vector and (b) adding a new objective to a
complex model, makes it more complex to solve and analyze
(Voorneveld, 2003). For these reasons, heuristics are developed to
obtain the answer of the problem approximately in a very short
run time (Woeginger, 2005). Different multi-objective solution
methods are developed in the literature for solving problems with
different working assumptions such as:

– multi-objective particle swarm optimization (MOPSO) (Tsou,
2008; Hsu, Tsou, & Yu, 2009, etc.),

– multi-objective genetic algorithm (MOGA) (Karimi-Nasab &
Aryanezhad, 2011; Soares & Vieira, 2009; Morad & Zalzala,
1999, etc.),

– artificial neural network (ANN) (McMullen, 2001; Gholamian,
Fatemi Ghomi, & Ghazanfari, 2006, etc.),

– fuzzy simulation (Maity & Maiti, 2008; Xu & Zhao, 2008, etc.),
– problem-specific heuristic (Karimi-Nasab & Pakgohar, 2010).

Also, Tsou, 2008 declared that it is necessary to introduce the
best solution among the set of Pareto-optimal solutions to the pro-
duction manager. He proposed using a simple decision making
method such as TOPSIS for recognizing the best solution after
obtaining a set of Pareto-optimal solutions by a multi-objective
solution method such as MOPSO.

Random search methods are so widespread for their simplicity
and efficiency in solving complex problems in a reasonable time by
an acceptable degree of accuracy. Of course, random search meth-
ods could be considered as a special category of simulation–opti-
mization techniques (Pierreval & Paris, 2003). Also different
characteristics of random search algorithms for discrete optimiza-
tion are discussed in the literature (Bartkute & Sakalauskas, 2009;
Hong & Nelson, 2007; Sriver, Chrissis, & Abramson, 2009). Hence
all of the time new versions of random search algorithms are pro-
posed in the literature (Horng & Lin, 2009; Litinetski & Abramzon,
1998; Touat, Pyrz, & Rechak, 2007). Different simulation models

are proposed for optimization in production planning, scheduling
and other problems (Jozefowska & Zimniak, 2008; Sastry, Janakir-
aman, Mohideen, & Ismail, 2005; Dijk & Sluis, 2008; Hsieh, 2002;
Kleijnen, 2008; Paternina-Arboleda & Das, 2005). For example,
Kleijnen and Wan (2007) illustrated the use of simulation optimi-
zation in an (s, S) inventory management system with the objective
function of minimizing the expected value of specific inventory
costs. On the other hand, production planning with multi-objective
in mind need a method to find the best solution over all feasible
points, or as it is a real challenge to find such an ideal solution,
at least give a set of non-dominated production plans as Pareto-
optimal solutions.

Thus simulation optimization is used in multi-objective prob-
lems successfully (Zhang, 2008). Also some special purpose pack-
ages are constructed for optimizing production and manufacturing
systems via simulation such as SimOpt (Guo, Liao, Cheng, & Liu,
2006). But all of them have their own limitations, especially for add-
ing complicated constraints or new objective functions to an optimi-
zation model. Recently Bachelet and Yon (2007) proposed a coupling
between optimization and simulation that tries to improve the solu-
tion provided by a mathematical model.

In this study, a multi-objective production planning problem is
formulated in Section 2. As the main problem is proved to be NP-
Complete in Section 3, meanwhile it is desired to obtain a set of
Pareto-optimal solutions of the problem in a reasonable CPU time;
a random search algorithm is developed in Section 4. Also, for eval-
uating the performance of the heuristic, a multi-objective genetic
algorithm is developed in Section 4. Through the reports, some re-
lated theorems and lemmas are proved. The algorithm is examined
on a set of real world data in Section 5 and some of Pareto-optimal
production plans are obtained for it. Furthermore, comparisons of
the heuristic with multi-objective genetic algorithm are given at
the end of Section 5. Finally, Section 6 is dedicated to some of con-
cluding remarks and future research directions.

2. Mathematical modeling

In this section, the studied problem is modeled via mathemati-
cal formulation. Before mathematical formulation of the problem,
main assumptions of the problem are listed as below:

1. The production manager wants to simultaneously optimize
three objectives as: (I) minimizing the total cost of production
plan, (II) minimizing the total variations in lot sizes, and (III)
minimizing the distance of lot sizes to the customer needs,

2. the manager could assume different priorities for each objective
such that none of them are unimportant,

3. the manager prefers to have a set of alternative production
plans instead of one plan,

4. the problem is to determine lot sizes of a product over a finite
planning horizon,

5. the maximum production capacity of the plant is a determinis-
tic value as PC,

6. for each batch a setup cost should be paid, while setup times are
negligible,

7. customers’ demand is a dynamic and deterministic value for
each planning period,

8. backordering is allowed. In other words, all shortages should be
compensated till the end of the last planning period (i.e., short-
age value of the last planning period should be strongly zero).

Table 1 describes all of the parameters and variables of the
model.

Now the proposed triple-objective model is introduced as
below:

Fig. 1. Ideal production band (taken from Karimi-Nasab and Aryanezhad (2011)).
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