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Abstract

In this paper, two adaptive iterative learning control schemes, proposed by A. Tayebi [2004, Automatica, 40(7), 1195–1203], are

tested experimentally on a five-degrees-of-freedom (5-DOF) robot manipulator CATALYST5. The control strategy consists of using

a classical PD feedback structure plus an additional iteratively updated term designed to cope with the unknown parameters and

disturbances. The control implementation is very simple in the sense that the knowledge of the robot parameters is not needed, and

the only requirement on the PD and learning gains is the positive definiteness condition. Furthermore, in contrast with classical ILC

schemes where the number of iterative variables is generally equal to the number of control inputs, the adaptive control schemes

tested in this paper involve just one or two iterative variables.
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1. Introduction

It is well known that robot manipulators are generally
used in repetitive tasks (e.g., automotive manufacturing
industries). Therefore, it is interesting to take advantage
of the fact that the reference trajectory is repeated over a
given operation time. In this context, iterative learning
control (ILC) techniques can be applied in order to
enhance the tracking performance from operation to
operation. Since the early works of Arimoto et al.
(1984), Casalino and Bartolini (1984) and Craig (1984),
several ILC schemes for robot manipulators have been
proposed in the literature (see for instance Arimoto,
1996; Bondi et al., 1988; Luca et al., 1992; Horowitz,

1993; Kavli, 1992; Kawamura et al., 1988; Moon et al.,
1997). These ILC algorithms, whether developed for the
linearized model or the nonlinear model, are generally
based upon the contraction mapping approach and
require a certain a priori knowledge of the system
dynamics.

On the other hand, another type of ILC algorithms
have been developed using Lyapunov and Lyapunov-
like methods. In fact in French and Rogers (2000), a
standard Lyapunov design is used to solve ILC
problems. The idea consists to use a standard adaptive
controller and to start the parameter estimates with their
final values obtained at the preceding iteration. In the
same spirit, Choi and Lee (2000) proposed an adaptive
ILC for uncertain robot manipulators, where the
uncertain parameters are estimated along the time
horizon whereas the repetitive disturbances are compen-
sated along the iteration horizon. However, as in
standard adaptive control design, this technique
requires the unknown system parameters to be constant.
In Ham et al. (1995), Ham et al. (2000), Kuc et al.
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(1991), Xu (2002), Xu et al. (2000) and Xu and Tan
(2001), several ILC algorithms have been proposed
based upon the use of a positive-definite Lyapunov-like
sequence which is made monotonically decreasing along
the iteration axis via a suitable choice of the control
input. In contrast with the standard adaptive control,
this technique is shown to be able to handle systems with
time-varying parameters since the adaptation law in this
case is nothing else but a discrete integration along the
iteration axis. Based on this approach, Kuc et al. (1991)
proposed an ILC scheme for the linearized robot
manipulator model, while in (Ham et al., 2000; Xu et
al., 2000) nonlinear ILC schemes have been proposed
for the nonlinear model. Again these control laws
require a certain a priori knowledge of the system
dynamics.

In Tayebi (2004), a simple ILC scheme, for the
position tracking problem of rigid robot manipulators
without any a priori knowledge on the system para-
meters, has been proposed. The control strategy consists
of a PD term plus an additional iterative term
introduced to cope with the unknown parameters and
disturbances. The proof of convergence is based upon
the use of a Lyapunov-like positive definite sequence,
which is made monotonically decreasing through an
adequate choice of the control law and the iterative
adaptation rule. In contrast with classical ILC schemes
where the number of iterative variables is generally
equal to the number of control inputs, the proposed
control strategy uses one or two iterative variables,
which is interesting from a practical point of view since
it contributes considerably to memory space saving. In
this framework, the acceleration measurements and the
bounds of the robot parameters are not needed and the
only requirement on the control gains is the positive
definiteness condition.

In this paper, we present some experimental results on
a 5-DOF robot manipulator CATALYST5, confirming
the effectiveness of the control strategy proposed in
Tayebi (2004).

2. Equations of motion and problem statement

Using the Lagrangian formulation, the equations of
motion of a n degrees-of-freedom rigid manipulator may
be expressed by

MðqkÞ €qk þ Cðqk; _qkÞ _qk þ GðqkÞ ¼ tkðtÞ þ dkðtÞ, (1)

where t 2 Rþ denotes the time and the non-negative
integer k 2 Zþ denotes the operation or iteration
number. The signals qk 2 Rn, _qk 2 R

n and €qk 2 Rn are
the joint position, joint velocity and joint acceleration
vectors, respectively, at the iteration k. MðqkÞ 2 Rn�n is
the inertia matrix, Cðqk; _qkÞ _qk 2 Rn is a vector resulting
from Coriolis and centrifugal forces. GðqkÞ 2 Rn is the

vector resulting from the gravitational forces. tk 2 Rn is
the control input vector containing the torques and
forces to be applied at each joint. dkðtÞ 2 Rn is the vector
containing the unmodeled dynamics and other unknown
external disturbances.

Assuming that the joint positions and the joint
velocities are available for feedback, our objective is to
design a bounded control law tkðtÞ guaranteeing the
boundedness of qkðtÞ, 8t 2 ½0;T � and 8k 2 Zþ, and the
convergence of qkðtÞ to the desired reference trajectory
qd ðtÞ for all t 2 ½0;T � when k tends to infinity.
Throughout this paper, we will use the Lpe norm
defined as follows:

kxðtÞkpe¼
4

R t

0 kxðtÞk
p dt

� �1=p
if p 2 ½0;1Þ;

sup
0ptpt

kxðtÞk if p ¼ 1;

8><
>:

where kxk denotes any norm of x, and t belongs to the
finite interval ½0;T �. We say that x 2Lpe when kxkpe

exists (i.e., when kxkpe is finite).
We assume that all the system parameters are

unknown and we make the following reasonable
assumptions:

(A1) The reference trajectory and its first and second
time-derivatives, namely qdðtÞ, _qd ðtÞ and €qd ðtÞ, as
well as the disturbance dkðtÞ are bounded 8t 2
½0;T � and 8k 2 Zþ.

(A2) The resetting condition is satisfied, i.e., _qdð0Þ�
_qkð0Þ ¼ qdð0Þ � qkð0Þ ¼ 0, 8k 2 Zþ.

We will also make use of the following properties, which
are common to robot manipulators

(P1) MðqkÞ 2 Rn�n is symmetric, bounded, and positive
definite.

(P2) The matrix _MðqkÞ � 2Cðqk; _qkÞ is skew symmetric,
hence xTð _MðqkÞ � 2Cðqk; _qkÞÞx ¼ 0; 8x 2 Rn.

(P3) kCðqk; _qkÞkpkck _qkk and kGðqkÞkokg, 8t 2 ½0;T �
and 8k 2 Zþ, where kc and kg are unknown
positive parameters.

3. Adaptive ILC

Let us consider system (1) under the following control
law (Fig. 1):

tkðtÞ ¼ KP ~qkðtÞ þ KD
_~qkðtÞ þ Zð_~qkÞŷkðtÞ (2)

with

ŷkðtÞ ¼ ŷk�1ðtÞ þ GZTð_~qkÞ
_~qkðtÞ, (3)

where ŷ�1ðtÞ ¼ 0, ~qkðtÞ ¼ qdðtÞ � qkðtÞ and _~qkðtÞ ¼
_qd ðtÞ � _qkðtÞ. The matrices KP 2 Rn�n and KD 2 Rn�n

are symmetric positive definite.
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