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a b s t r a c t

Variance based sensitivity indices represent how the input uncertainty influences the out-
put uncertainty. In order to identify how the distribution parameters of inputs influence
the variance contributions, this work proposes the sensitivity of the variance contribu-
tions, which is defined by the partial derivative of the first-order variance contribution
with respect to the distribution parameter. The proposed sensitivity can reflect how small
variation of the distribution parameter influences the first-order variance contribution. By
simplifying the partial derivative of the first-order variance contribution into the form of
expectation via the kernel function, the proposed sensitivity can be seen as a by-product of
the variance based sensitivity analysis without any additional output evaluations. For the
classical quadratic responses, the proposed sensitivity can be derived analytically based on
the integral form, while for the complex responses, the state dependent parameter (SDP)
basedmethod,which has been applied in the variance sensitivity analysis, can be employed
to compute the proposed sensitivity. Several examples are used to demonstrate the correct-
ness of the analytical solutions and the efficiency of the SDP based method.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Development of probabilistic sensitivity analysis is frequently considered as an essential component of a probabilistic
analysis [1]. Traditional sensitivity analysis (SA) can be classified into two groups: local SA and global SA [2]. Local SA usually
investigates how small variation of the distribution parameter around the reference point changes the value of the output.
One classical local SA is the derivative based SA which is defined as the derivative of response merits with respect to the
distribution parameters of inputs. The main drawback of the derivative based SA is that it depends on the choice of the
nominal point, while the main advantage of it is the low computational cost that is gained in turn [3].

Global SA studies how the uncertainty in the output of a computational model can be decomposed according to the input
sources of uncertainty [4]. Contrary to the local SA, global SA explores the whole range of uncertainty of the model inputs
by letting them vary simultaneously [5]. At present, a number of global sensitivity indices have been suggested, e.g. Helton
and Saltelli proposed the non-parametric sensitivity indices (input–output correlation) [6,7], Sobol, Iman and Saltelli pro-
posed the variance based sensitivity indices [7–9], Chun, Liu and Borgonovo proposed the moment independent sensitivity
indices [10,11], Sobol and Kucherenko proposed the derivative based sensitivity indices and investigated their link with the
variance based sensitivity indices [12–14]. In this work, we mainly investigate the variance based sensitivity indices which
have been applied to design under uncertainty problems and are capable of identifying the contributions of any randomvari-
able. However, the variance based sensitivity indices are far more computationally demanding and various methods have
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been used to compute the variance based sensitivity indices, such as Sobol’s method [15], the FAST method [16], and the
meta-model based method [17]. Those methods all have their deficiencies, Sobol’s method and the FAST method which are
indeed computationally demanding for the engineering applications, and the meta-model based method cannot estimate
the total variance based sensitivity indices if the interactions are higher than the second order in the ANOVA decomposition.

It is noticed that in the classical variance based SA, the influences of distribution parameters are not considered. If the
variation of a distribution parameter can lead to the considerable changes to the variance contributions, the computational
results of the variance based SA will be vulnerable and less reliable. Thus, analysts need to investigate the effects of the
distribution parameters on the variance contributions in the variance based SA. In this work, we propose the sensitivity
of distribution parameters on variance contributions which is defined by the partial derivative of the first-order variance
contribution (FOVC) with respect to the distribution parameter. The proposed sensitivity can reflect how small variations of
distribution parameters influence the FOVC.

In Ref. [1], Millwater has employed the kernel function which can be derived analytically for various distribution types
to simplify the partial derivative based sensitivity of the first two moments and the failure probability, and then the partial
derivative based sensitivity can be computed efficiently. Thus, in this work, we also employ the kernel function to simplify
the proposed sensitivity first. Then for the simplified sensitivity, solutions for the classical quadratic polynomial without
cross-terms response are derived analytically, while for the complex responses, the SDP based method, which is developed
recently by Ratto [18] and Li [19], is employed to compute the proposed sensitivity.

The remainder of this work is organized as follows: Section 2 gives a brief review of the variance based SA. Section 3 first
develops the sensitivity of distribution parameters on the FOVC, then the proposed sensitivity for the classical quadratic
polynomial without cross-terms response is derived analytically. Some discussions for the effect of the kernel function
and some computational considerations of the proposed sensitivity are given in Section 4. In Section 5, the SDP based
method is employed to compute the proposed sensitivity. In Section 6, two numerical examples are first given to validate the
correctness of the analytical solutions for the classical quadratic polynomialwithout cross-terms response and the efficiency
of the SDP based method, then a simple cantilever with explicit response and a ten-bar structure with implicit response are
employed to validate the reasonability of the proposed sensitivity. Finally, some conclusions are drawn in Section 7.

2. A brief review of the variance based sensitivity analysis

Consider a square integrable function Y = g(X) defined in the hypercube Hn, where X = (X1, X2, . . . , Xn) are n inde-
pendent inputs. Themethod of variance based sensitivity indices developed by Sobol is based on ANOVA decomposition and
there exists the following unique decomposition [8]:

g(X) = g0 +

n
i=1

gi(Xi) +

n
1≤i<j≤n

gij(Xi, Xj) + · · · + g1,2,...,n(X1, X2, . . . , Xn) (1)

where

g0 = E(Y )

gi = E(Y |Xi) − E(Y )

gij = E(Y |Xi, Xj) − gi − gj − E(Y )

(2)

E(Y ) is the expectation of the output, E(Y |·) is the conditional expectation of the output and the higher order items can be
obtained analogously.

The variance of the output variable Y can thus be decomposed into:

V =

n
i=1

Vi +

n
1≤i<j≤n

Vij + · · · + V1,2,...,n (3)

where V is the total variance, and

Vi = V (Yi) = V (E(Y |Xi))

Vij = V (Yij) = V (E(Y |Xi, Xj)) − V (E(Y |Xi)) − V (E(Y |Xj))
(4)

are the first-order and second-order variance contributions of inputs, respectively.
In this approach, the FOVC of input Xi can be given in the form of integration:

Vi = VXi(EX−i(Y |Xi)) = E

(E(y|xi) − E(y))2


=


R1

(E(y|xi) − E(y))2 fXi(xi)dxi (5)

where E(y) =

Rn g(x)fX (x)dx and E(y|xi) =


Rn−1 g(x)fX−i(x−i)dx−i are the expectation and the conditional expectation of

the output respectively. fXi(xi) is the marginal PDF of input Xi, fX (x) is the joint PDF of input vector X and fX−i(x−i) is the
joint PDF of all inputs except Xi. The FOVC can reflect the reduced portions of the output variance when the uncertainty of
input Xi is eliminated. We look for the input that, once ‘‘discovered’’ with its true value and constrained at this value, would
reduce the uncertainty of the output the most and, therefore, make the model inference more robust [20].
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