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a b s t r a c t

This paper undertakes a Bayesian analysis of optimal monetary policy for the U.K. We

estimate a suite of monetary-policy models that include both forward- and backward-

looking representations as well as large- and small-scale models. We find an optimal

simple Taylor-type rule that accounts for both model and parameter uncertainty. For

the most part, backward-looking models are highly fault tolerant with respect to

policies optimized for forward-looking representations, while forward-looking models

have low fault tolerance with respect to policies optimized for backward-looking

representations. In addition, backward-looking models often have lower posterior

probabilities than forward-looking models. Bayesian policies therefore have character-

istics suitable for inflation and output stabilization in forward-looking models.

& 2011 The Bank of England. Published by Elsevier B.V. All rights reserved.

1. Introduction

Central bankers frequently emphasize the importance of uncertainty in shaping monetary policy (e.g. see Greenspan,
2004; King, 2004). Uncertainty takes many forms. The central bank must act in anticipation of future conditions, which are
affected by shocks that are currently unknown. In addition, because economists have not formed a consensus about the
best way to model the monetary transmission mechanism, policy makers must also contemplate alternative theories with
distinctive operating characteristics. Finally, even economists who agree on a modeling strategy sometimes disagree about
the values of key parameters. Central bankers must therefore also confront parameter uncertainty within macroeconomic
models.

A natural way to address these issues is to regard monetary policy as a Bayesian decision problem. As noted by Brock
et al. (2003), a Bayesian approach is promising because it seamlessly integrates econometrics and decision theory. Thus,
we can use Bayesian econometric methods to assess various sources of uncertainty and incorporate the results as an input
to a decision problem.
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Our aim in this paper is to consider how monetary policy should be conducted in the face of multiple sources of
uncertainty, including model and parameter uncertainty as well as uncertainty about future shocks. We apply Bayesian
methods root and branch to a suite of macroeconomic models estimated on U.K. data, and we use the results to devise a
simple, optimal monetary-policy rule.

1.1. The method in more detail

Just to be clear, we take two shortcuts relative to a complete Bayesian implementation. First, we neglect
experimentation. Under model and/or parameter uncertainty, a Bayesian policy maker has an incentive to vary the policy
instrument in order to generate information about unknown parameters and model probabilities. In the context of
monetary policy, however, a number of recent studies suggest that experimental motives are weak and that ‘adaptive
optimal policies’ (in the language of Svensson and Williams, 2008a) well approximate fully optimal, experimental
policies.1 Because of that, and also because many central bankers are averse to experimentation, our goal is to formulate an
optimal non-experimental rule.

We also restrict attention to a simple rule, i.e. one involving a relatively small number of arguments as opposed to the
complete state vector. This is for tractability as well as for transparency. For a Bayesian decision problem with multiple
models, the fully optimal decision rule would involve the complete state vector for all the models under consideration.
That would complicate our calculations a great deal. Some economists also argue that simple rules constitute more
useful communication tools. For example, Woodford (1999) writes that ‘‘a simple feedback rule would make it easy to
describe the central bank’s likely future conduct with considerable precision, and verification by the private sector
of whether such a rule is actually being followed should be straightforward as well.’’ Thus, we restrict policy to follow
Taylor-like rules.

With those simplifications in mind, our goal is to choose the parameters of a Taylor rule to minimize expected posterior
loss. Suppose f represents the policy-rule parameters and that liðf,yiÞ represents expected loss conditional on a particular
model i and a calibration of its parameters yi. Typically liðf,yiÞ is a discounted quadratic loss function that evaluates
uncertainty about future shocks. One common approach in the literature is to choose f to minimize liðf,yiÞ. This delivers a
simple optimal rule for a particular model and calibration, but it neglects parameter and model uncertainty.

To incorporate parameter uncertainty within model i, we must first assess how much uncertainty there is. This can be
done by simulating the model’s posterior distribution, pðyijY ,MiÞ, where Mi indexes model i, and Y represents current and
past data on variables relevant for that model. Methods for Bayesian estimation of DSGE models were pioneered by
Schorfheide (2000) and Smets and Wouters (2003) and are reviewed by An and Schorfheide (2007). If model i were the
only model under consideration, expected loss would be

liðfÞ ¼
Z

liðf,yiÞpðyijY ,MiÞ dyi: ð1Þ

This integral might seem daunting, but it can be approximated by averaging across draws from the posterior simulation.
Assuming evenly weighted draws from the posterior, expected loss is

liðfÞ �N�1
XN

j ¼ 1

liðf,yijÞ, ð2Þ

where N represents the number of Monte Carlo draws and yij is the jth draw for model i. A policy rule robust to parameter
uncertainty within model i can be found by choosing f to minimize liðfÞ.

This is a step forward, but it still neglects model uncertainty. To incorporate multiple models, we attach probabilities to
each and weigh their implications in accordance with those probabilities. Posterior model probabilities depend on prior
beliefs and on their fit to the data. Suppose that p(Mi) is the policy-makers prior probability on model i, that pðyijMiÞ

summarizes his prior beliefs about the parameters of that model, and that pðY jyi,MiÞ is the model’s likelihood function.2

According to Bayes’ theorem, the posterior model probability is

pðMijYÞppðY jMiÞpðMiÞ, ð3Þ

where

pðY jMiÞ ¼

Z
pðY jyi,MiÞpðyijMiÞ dyi ð4Þ

is the marginal likelihood or marginal data density. The latter can also be approximated numerically using output of the
posterior simulation; see An and Schorfheide for details. To account for model uncertainty, we average liðfÞ across models

1 E.g. see Cogley et al. (2007, 2008), and Svensson and Williams (2007a, 2007b, 2008a, 2008b).
2 For simplicity, we assume that Y is common across models, but that is unnecessary. A technical appendix posted online at http://homepages.nyu.

edu/�tc60 describes the more realistic case in which the list of variables differs across model.
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