SIMULATION

PRACTICE 2 THEORY

LSEVIER Simulation Practice and Theory 8 (2001) 511-527
www.elsevier.com/locate/simpra

Performance analysis of automatic lookahead
generation by control flow graph: some
experiments

Behrouz Zarei *, Mike Pidd

Management Science Department, Lancaster University, Lancaster LAl 4YW, UK
Received 25 April 2000; received in revised form 1 December 2000

Abstract

The performance of parallel discrete event models is highly dependent on lookahead, par-
ticularly when a conservative algorithm is employed. Unfortunately lookahead is known to be
problem-dependent, which restricts the implementations of conservative algorithms. This pa-
per uses a simple queuing network to show how this lookahead affects performance and dis-
cusses various techniques for automatic generation of lookahead using control flow graphs
(CFGs). These methods are tested on the queuing network simulation running on a CRAY
T3E 1200E. Results indicate that the automatic lookahead techniques, though requiring some
time to compute, perform as well as the best manually extracted lookahead injected into the
parallel program. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Lookahead; Automatic lookahead generation; Parallel simulation; Control flow graph;
Queuing network; Performance analysis

1. Introduction

In parallel discrete event simulation PDES [1], the model to be simulated is de-
composed into physical processes that are modelled as simulation objects and as-
signed to logical processes (LPs). The simulator is composed of a set of
concurrently executing LPs running on distributed physical processors. The LPs
communicate by exchanging two types of time-stamped messages: real messages,
which are events in one processor and must be scheduled in another processor;
and null messages, which are used to synchronise the processors. In order to

* Corresponding author.
E-mail address: b.zarei@lancaster.ac.uk (B. Zarei).

0928-4869/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0928-4869(01)00031-3



512 B. Zarei, M. Pidd | Simulation Practice and Theory 8 (2001) 511-527

maintain causality, the LPs must process messages in strictly non-decreasing time-
stamp order. There are two basic synchronisation protocols used to ensure that this
condition is not violated: the first conservative and the second optimistic. Conserva-
tive protocols, such as Chandy-Misra [2] and Bryant [3] (often known as CMB)
avoid causality errors, while optimistic protocols, such as Time Warp [4], allow
causality errors to occur, but implement some recovery mechanism.

Conservative protocols were the first distributed simulation mechanism. The basic
problem conservative mechanisms must address is the determination of safe events.
The conservative process must first determine that it is impossible to receive another
event with a lower time stamp than the event it is currently trying to execute. Such
events are assumed to be safe and can be executed without violation of system cau-
sality. Processes containing no safe events must be blocked; this can lead to a dead-
lock situation if no appropriate precautions are taken. Many optimisations of the
basic conservative mechanism can be found in the literature. For instance, instead
of creating null messages a mechanism can be used to detect when the simulation
is deadlocked and another mechanism to break the deadlock [5] or send null mes-
sages on a demand basis, i.e. whenever a process is about to become deadlocked,
it requests the next message from the sender process [6]. This approach reduces
the null message traffic, though a longer delay may be required, due to transmission
of two messages.

In an optimistic protocol, each LP operates as a distinct discrete event simulator,
maintaining input and output event lists, a state queue, and a local simulation time
(called local virtual time or LVT). Each LP processes events optimistically and
moves ahead in LVT. As each LP simulates asynchronously, it is possible for an
LP to receive an event from the past, termed a straggler, which violates the causality
constraints of the events in the simulation. On receipt of a straggler message, the LP
must rollback to undo events that have been wrongly processed. Rollback involves
two steps (i) restoring the state to a time preceding the time stamp of the straggler
and (i) cancelling any output event messages that were erroneously sent. After roll-
back, the events are re-executed in the proper order. Optimisations of the basic
mechanism have been proposed to overcome the drawback of state-saving. For in-
stance, processes could stop the immediate sending of the anti-messages for any roll
back computation and instead, could wait to see if the re-execution of the computa-
tion regenerates the same messages. If the same message is regenerated, there is no
need to cancel the message [7]. Also combining optimistic and conservative protocols
is employed in order to take advantage of less memory usage property of the conser-
vative algorithm. Ideally such a protocol monitors the parallel simulation and esti-
mates the trade-off between the conservatism cost (i.e. blocking cost) and the
optimism cost (i.e. state-saving and rollback) and accordingly adjusts the protocol
control parameters [8].

Fujimoto [9] outlines the main concerns of PDES and Ferscha [10] comprehen-
sively demonstrates the synchronisation layer of the PDES. The emergence of com-
plicated applications (such as wireless networks [11], telecommunication systems
[12], manufacturing [13], and cache design [14]) and widely available parallel and
distributed platforms encourages the use of PDES as a tool for decision-makers.



ISIf)rticles el Y 20 6La5 s 3l OISl ¥
Olpl (pawasd DYl gz 5o Ve 00 Az 5 ddes 36kl Ol ¥/
auass daz 3 Gl Gy V

Wi Ol3a 9 £aoge o I rals 9oy T 55 g OISl V/

s ,a Jol domieo ¥ O, 55l 0lsel v/

ol guae sla oLl Al b ,mml csls p oKl V7

N s ls 5l e i (560 sglils V7

Sl 5,:K8) Kiadigh o Sl (5300 0,00 b 25 ol Sleiiy ¥/


http://isiarticles.com/article/27569

