Performance analysis of coated plutonia particle fuel compact for radioisotope heater units

Mohamed S. El-Genk *, Jean-Michel Tournier

Department of Chemical and Nuclear Engineering, Institute for Space and Nuclear Power Studies, University of New Mexico, Farris Engineering Ctr. Room 239, Albuquerque, NM 87131-1341, USA

Received 6 October 2000; received in revised form 8 December 2000; accepted 24 January 2001

Abstract

Coated plutonia particle fuel has been proposed recently for use in radioisotope power systems and radioisotope heater units for a variety of space missions requiring power levels from milliwatts to tens or even hundreds of watts. The $^{238}\text{PuO}_2$ fuel kernels are coated with a strong layer of ZrC designed to fully retain the helium gas generated by the radioactive decay of ^{238}Pu. A recent investigation has concluded that helium retention in large-grain ($\geq 200 \mu\text{m}$) granular and polycrystalline fuel kernels is possible even at high-temperatures ($> 1700 \text{ K}$). Results of performance analysis showed that this fuel form could increase by 2.3–2.4 times the thermal power output of a light weight radioisotope heater unit. These figures are for a single-size (500 μm) particles compact, assuming 10% and 5% helium gas release respectively, and a fuel temperature of 1723 K, following 10 years of storage. A binary-size (300 and 1200 μm) particles compact increases the thermal power output of the RHU by an additional 15%. © 2001 Elsevier Science B.V. All rights reserved.

Nomenclature

- a: average fuel grain radius (m)
- b: coefficient (Eq. (11)), $b = 1.5121 \times 10^{-2}$ (m3 kg$^{-1}$)
- D: gas mass diffusion coefficient in fuel matrix (m2 s$^{-1}$)
- D': effective gas diffusion coefficient in fuel, $D' = D/a^2$ (s$^{-1}$)
- D_f: diameter of fuel kernel (m)
- D_g: average diameter of fuel grain (m)
- D_p: outer diameter of coated fuel particle (m)
- F: fraction of helium gas released from the fuel matrix that exerts pressure on outer coating

* Corresponding author. Tel.: +1-505-277-5442; fax: +1-505-277-2814.
E-mail address: mgenk@unm.edu (M.S. El-Genk).

0029-5493/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0029-5493(01)00351-X
\(F^* \) release-to-birth rate ratio of radioisotope
\(M \) molecular weight (kg mol\(^{-1}\))
\(n \) number of moles (moles)
\(N_a \) Avogadro number \((N_a = 6.0225 \times 10^{23} \text{ atoms mol}^{-1})\)
\(N_{\text{Pu}} \) Pu-238 atom density of as-fabricated plutonia fuel kernel (atoms kg\(^{-1}\))
\(P \) pressure (Pa)
\(q \) thermal power (W\(_{th}\))
\(q'' \) volumetric thermal power (W\(_{th}\) m\(^{-3}\))
\(R_{\text{g}} \) perfect gas constant \((R_g = 8.3143 \text{ J mol}^{-1} \text{ K}^{-1})\)
\(R_{\text{inner}} \) inner radius of ZrC coating (m)
\(\mathcal{R} \) dimensionless stress factor of a spherical shell
\(S_{\text{p}} \) geometrical surface area of as-fabricated fuel kernel (m\(^2\))
\(S_{\text{eq}} \) effective gas release area in fuel kernel (m\(^2\))
\(T \) temperature (K)
\(t \) time (s)
\(t_{\text{PyC}} \) thickness of pyrolytic carbon inner layer (m)
\(t_{\text{ZrC}} \) thickness of ZrC coating (m)
\(T_{1/2} \) radioactive decay half life (s)
\(\text{VOL} \) volume (m\(^3\))
\(Y_{\text{ZrC}} \) yield strength of ZrC (Pa)

Greek
\(\varkappa \) fraction of coarse spheres in a binary mixture at maximum packing
\(\beta \) maximum packing volume fraction of 2-size spheres in compact
\(\gamma \) open grain boundary porosity
\(e_{\text{open}} \) as-fabricated porosity of fuel kernel
\(e_{\text{open}}^{\text{open}} \) amount of open porosity in fuel kernel
\(e_{\text{PyC}} \) as-fabricated porosity of pyrolytic carbon layer
\(\lambda \) radioactive decay constant (s\(^{-1}\))
\(\eta \) thermal-to-electric conversion efficiency
\(\rho \) density (kg m\(^{-3}\))
\(\sigma_{T} \) maximum tangential tensile stress in ZrC coating layer (Pa)
\(\Psi \) thermal power ratio, \(q_{\text{CPFC-RHU}}/q_{LWRHU} \)

Subscript/superscript
\(f \) PuO\(_2\) fuel
\(\text{He} \) helium gas
\(m \) exponent
\(\text{max} \) maximum
\(\text{Pu} \) plutonium
\(\text{TD} \) theoretical density
\(l \) coarse particles in a binary mixture fuel-compact
\(2 \) fine particles in a binary mixture fuel-compact
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات