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a b s t r a c t

In this paper, a D-type anticipatory iterative learning control (ILC) scheme is applied to the boundary
control of a class of inhomogeneous heat equations, where the heat flux at one side is the control
input while the temperature measurement at the other side is the control output. By transforming the
inhomogeneous heat equation into its integral form and exploiting the properties of the embedded Jacobi
Theta functions, the learning convergence of ILC is guaranteed through rigorous analysis, without any
simplification or discretization of the 3D dynamics in the time, space as well as iteration domains. The
adopted ILC scheme makes full use of the process repetition and deals with state-independent or state-
dependent uncertainties. Meanwhile, due to the feedforward characteristic of ILC, the proposed scheme
not only makes anticipatory compensation possible to overcome the heat conduction delay in boundary
output tracking, but also eliminates the gain margin limitation encountered in feedback control. In the
end, an illustrative example is presented to demonstrate the performance of the proposed ILC scheme.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Iterative learning control (ILC) is an effective control technology
in handling repeatable control processes. Due to its structural sim-
plicity and model-free nature in the design process of controller,
ILC has beenwidely used in industries, such as roboticmanipulator,
hard disk drives, rapid thermal processing, and chemical polymer-
ization/crystallization (Bristow, Tharayil, & Alleyne, 2006; Chen,
Moore, Yu, & Zhang, 2008; Moore, 1999; Yang & Chan, 2009). In
these applications, different technologies of ILC, from the simplest
P-type ILC to the much more complex higher-order PID-type ILC,
have been exploited and tested in detail. ILC is playing a more and
more important role in controlling repeatable processes.
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However, despite the significant progress of ILC for finite-
dimensional systems, studies of ILC for infinite-dimensional
processes are limited and only a few related works were reported
in this field. In Xu, Arastoo, and Schuster (2009), the design of
P-type andD-type ILC laws for a class of infinite-dimensional linear
systems is considered using semigroup theory. In Qu (2002), based
on Lyapunov theory, differential-difference type ILC is augmented
with proportional controller to attenuate the unknown periodic
speed variation for a stretched string system on a transporter.
In Zhao and Rahn (2008), the similar ILC scheme is combined
with proportional-derivative controller to compensate for the
unknown periodic motion on the right end for a class of axially
moving material systems. While the process models are nonlinear
in Qu (2002); Zhao and Rahn (2008), ILC is mainly designed
for the stability maintenance of mechanical processes. Recently,
under the framework of ILC, velocity boundary control of a class
of quasi-linear partial differential equation (PDE) processes is
considered in Huang and Xu (2011), where the convergence of
output regulation is guaranteed in the steady-state stage. To the
best of our knowledge, there have been no studies on the ILC
design of nonlinear PDE systems for boundary-input boundary-
output tracking tasks, which is mainly attributed to the following
points: (1) the infinite-dimensional characteristic of system,
(2) the interweave of 3D dynamics in the time, space, and iteration
domains (Huang & Xu, 2011), and (3) the absence of universal
analysis tools for ILC of distributed parameter systems.
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The heat control problem has been frequently encountered in
many industrial or chemical processes, e.g., indirect heating of liq-
uids and polymers, single-fluid batch processing, pipeline tracing,
energy recovery, low pressure cogeneration, drying and heating of
bulk materials, gas processing, and ebullient cooling. In the con-
trol of heat transfer equations or more general parabolic PDE sys-
tems, repetition and correction mechanisms are as common as in
lumped parameter systemsmodeled by ordinary differential equa-
tions (ODEs). Examples include the batch heat treatment furnace
(Tiwari, Mukhopadhyay, & Sanyal, 2005), tubular heat exchang-
ers (Alvarez, Yebra, & Berenguel, 2007), batch thermal sterilization
processes (Akterian, 1999), temperature control of tokamak plas-
mas (Xu et al., 2009), andmany other batch processes. In Boskovic,
Krstic, and Liu (2001), Fridman and Orlov (2009), Jiang, Nguyen,
and Prudhomme (2005), Krstic and Smyshlyaev (2008), Pisano and
Orlov (2012), the boundary control problem for heat processeswas
studied under strict assumptions on the admitted uncertainties
and perturbations. Moreover, the most important characteristic of
processes, i.e., the repetitiveness, will be ignored, when the con-
trol schemes proposed in Boskovic et al. (2001), Fridman and Orlov
(2009), Jiang et al. (2005), Krstic and Smyshlyaev (2008), Pisano
and Orlov (2012) are applied for batch processes.

In this paper, a D-type anticipatory ILC scheme is applied to
the boundary control of a class of inhomogeneous heat equations,
where the nonlinear heat source is state-independent or state-
dependent. Under a repeatable process environment, the heat flux
at one side is considered as the control input while the temper-
ature measurement at the other side is considered as the control
output. First, the heat conduction equation is transformed into its
integral form, based onwhich the input–output error dynamics are
presented clearly. Then, rigorous analysis is performed to exploit
the properties of the embedded Jacobi Theta functions in the er-
ror dynamics. With practical assumption on the uncertainties of
heat equations, these properties facilitate the consequent ILC de-
sign and convergence analysis. As a result, we can iteratively tune
the heat flux boundary condition on one side such that the bound-
ary output at the other side can track the desired reference point-
wisely.

It is worth noticing that we neither simplify the infinite-
dimensional heat equations to finite-dimensional ODE systems as
in Huang and Xu (2011) nor replace them by the discrete-time
equivalences as in Cichy, Galkowski, Rogers, and Kummert (2011).
On the one hand, in Huang and Xu (2011), the infinite-dimensional
heat equation is simplified as a finite-dimensional ODE system at
steady-state stage, which is only applicable for the set-point con-
trol task. If tracking control is considered as in our paper, model
simplification has the disadvantage of not taking relevant heat
conduction issues into account, namely, the distributed parame-
ter characteristic of heat conduction process is neglected, thus is
ineffective here. On the other hand, in Cichy et al. (2011), explicit
discretization is conducted for a class of linear heat equations to de-
rive amultidimensional discrete linear system, based onwhich the
ILC law is designed. Themodels obtained by the approach are of the
local type and hence the state-space dimension is low and finite. It
is obviously necessary to ensure that they adequately capture the
dynamics of the defining PDEs. Since this problem has not been ad-
dressed in Cichy et al. (2011), there is much further research to be
done on this approach to ensure that an adequate discrete model
for design is produced in the most efficient way. Meanwhile, nu-
merical instability must be prevented by imposing limits on the
time and space discretization periods. Although it can be calculated
by means of some numerical analysis methods or software tools,
it also hinders us to apply the proposed ILC scheme conveniently,
whichmight be a disadvantage of ILC with model discretization. In
particular, when the heat equation is nonlinear and/or possesses
some structural uncertainties, the analysis method proposed for

linear systems in Cichy et al. (2011) will lose its efficacy. In our
work, the ILC design and analysis is performed for the original heat
conduction equation, thus a class of ‘‘real’’ distributed parameter
systems. Without checking the numerical stability or the adequate
approximation property of the reduced plant, the proposed control
scheme is applicable directly for the boundary tracking control of
nonlinear heat equations.

Moreover, owing to the fact that ILC is a feedforward control, the
proposed scheme not only makes anticipatory compensation pos-
sible to overcome the heat conduction delay in boundary output
tracking, but also eliminates the gain margin limitation encoun-
tered in feedback control.

Throughout the paper, denote R the set of real numbers, N

the set of nonnegative integers, Q the set of {(x, t)|0 < x < 1,
0 < t ≤ T },Q the closed set of Q , namely, {(x, t)|0 ≤ x ≤ 1,
0 ≤ t ≤ T }, Cn([l1, l2],R) the set of scalar continuous functions
as n = 0 or continuously differentiable functions as n = 1 in
the interval [l1, l2], and H (E,R) an infinite-dimensional Hilbert
space of scalar functions defined on a domain E. For the function
v(x, t) ∈ H (Q ,R), vz denotes its partial derivative with respect
to variable z, e.g., vt = ∂v/∂t and vxx = ∂2v/∂x2. For simplicity,
we sometimes use the abbreviation v instead of v(x, t) below. For
a time-related function f (t) ∈ R, |f (t)| takes its absolute value,
and |f |λ , supτ∈[0,T ] e−λτ

|f (τ )| denotes its λ-norm, where λ is a
positive constant.

2. System description and problem statement

Consider the heat flux boundary control of the following one-
dimensional inhomogeneous heat equation under a repeatable
environment (Cannon, 1984)

vi
t(x, t) = vi

xx(x, t) + F(x, t, vi(x, t), vi
x(x, t)), (x, t) ∈ Q ,

vi(x, 0) = f (x), x ∈ (0, 1),
vi
x(0, t) = ui(t), t ∈ [0, T ],

vi
x(1, t) = g(t), t ∈ [0, T ],

(1)

where t ∈ [0, T ] is the time, x ∈ [0, 1] is the spatial coordinate,
vi(x, t) ∈ H (Q ,R) is the temperature measurement at the time
t and the position x, and i ∈ N is the iteration number. More-
over, ui

∈ C0([0, T ],R), g ∈ C0([0, T ],R), and f ∈ C1((0, 1),R)
such that f and fx are bounded. Theunknown function F(x, t, vi, vi

x)

is defined on the set Θ = {(x, t, vi, vi
x) | (x, t) ∈ Q , −∞ <

vi, vi
x < ∞}. Assuming the finiteness of |vi

| and |vi
x|, the function

F(x, t, vi, vi
x) is uniformly Hölder continuous2 in x and t for each

compact subset ofQ . In addition, there exists an unknown constant
CF such that

|F(x, t, p1, q1) − F(x, t, p2, q2)|

≤ CF {|p1 − p2| + |q1 − q2|}, (x, t) ∈ Q (2)

holds for all (pi, qi), i = 1, 2, namely, F(x, t, vi, vi
x) is Lips-

chitz continuous in the state-dependent variables vi and vi
x. It

is easy to write down examples of such functions, for example,
F(x, t, p, q) = sin(xt) cos(p)+cos(xt) sin(q). In the context of heat
conduction or diffusion, the uncertainty function F can be inter-
preted as a heat source or sink. Formost applications, the nonlinear

2 A real or complex-valued function χ on d-dimensional Euclidean space is
Hölder continuous when there are nonnegative real constants C and α such that
|χ(x) − χ(y)| ≤ C |x − y|α for all x and y in the domain of χ (Evans, 1998). The
number α is called the exponent of the Hölder condition. If α = 1, then the function
satisfies a Lipschitz condition. If α = 0, then the function is bounded.
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