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Abstract

In this paper, control of linear differential-algebraic-equation systems, subject to general quadratic constraints, is considered.

This setup, especially, includes the H1 control problem and the design for strict passivity. Based on linear matrix inequality (LMI)
analysis conditions, LMI synthesis conditions for the existence of linear output feedback controllers are derived by means of a
linearizing change of variables. This approach is constructive: a procedure for the determination of controller parameterizations is
given on the basis of the solution of the LMI synthesis conditions. A discussion of the possible applications of the presented results

concludes the paper. # 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Differential-algebraic equation (DAE) systems
(sometimes also referred to as singular, semistate or
descriptor systems) describe a broad class of systems
which are not only of theoretical interest but also have
great practical significance. Models of chemical processes
for example typically consist of differential equations
describing the dynamic balances of mass and energy while
additional algebraic equations account for thermo-
dynamic equilibrium relations, steady-state assumptions,
empirical correlations, etc. [7]. In mechanical engineering
DAE system descriptions result from holonomic and
non-holonomic constraints [16]. Also in electronics and
even in economics DAE descriptionsare encountered [9].
DAE systems are able to describe system behaviors

that cannot be captured by ‘‘non-DAE’’ systems (i.e.
systems governed only by differential equations) [1].
Therefore, index reduction techniques (i.e. reduction of
a DAE system to an ODE system) necessarily are con-
nected to a loss of information for high index systems.
Due to this fact much work has been focused on analy-
sis and design techniques for linear DAE systems in
recent years(see [8] for an overview). Even for index one
DAE systems (i.e. DAE systems, which are equivalentto

an ODE system) it is sometimes tedious or numerically
not reliable to use the inversion of the algebraic equa-
tions in order to incorporate ODE based controller
computation methods. This is especially the case for
problem descriptions in chemical process control, where
it is not uncommon to encounter much more algebraic
equations than differential equations (e.g. in distillation
control). Also for ODE process models an ODE based
controller computationmay not be the natural method
of choice: the actual control problem, typically, is given
by the process model plus some weighting systems or
filters plus the algebraic couplings between these sys-
tems, i.e. as a DAE system.
Quite recently LMI based analysis and synthesis meth-

ods have been introduced to DAE control problems, (but
so far restricted to H2- and H1-problems) [10,19,13]. In
this paper we consider the LMI approach to the general-
ized quadratic performance (GQP) control problem. In
[15] this problem is solved for non-DAE systems. The
idea is to control a generalized linear plant such that the
closed loop transfer function Gcl : w 2 H2 7!z 2 H2 is
internally stable and such that the general quadratic
constraint
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is imposed on the external input and output functions
w(.) and z(.) respectively. Here the notation ‘‘�0’’
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means: for a given quadratic scalar function Q(w,z),
Q(w, z)�0 is defined as 9E>0:Q(w, z)4	EwTw for all
w. Analogously

Ð
T
0 Q(w(t)), z(t))dt�0 means that

Ð
T
0

Q(w(t)), z(t))dt4	 �
Ð
T
0 w(t)w(t))dt holds for all

w(.)2L2 and some fixed E>0.
The rather general GQP problem contains some

important control problems as a special case if the
objective parameters UP50, VP=VP

T, and WP are cho-
sen accordingly. For example

. the H1 constraint ||Gcl||1<g, if UP, VP, and WP

are specified as UP=
1
� I, VP=	gI, WP=0;

. the strict passivity constraint Gcl(j!)+Gcl(j!)*>0
for all !2R [{1}, when UP, VP, WP are chosen as
UP=0, VP=0, WP=	I;

. sector constraints of the formðT
0

z tð Þ 	 �w tð Þð Þ
T z tð Þ 	 �w tð Þð Þdt � 0 ð2Þ

for UP=I, VP=	��I, WP=	
1

2
(�+�)I.

The key to the synthesis problem is a modified version
of the linearizing change of variables approach used in the
corresponding case for ODE systems [15]. In contrast to a
previous paper [11] we do not assume the DAE descrip-
tion to be in semi-explicit form. Especially, it is possible to
include the standard ODE result without any additional
fall differentiation. The paper is structured as follows: in
the next section the necessary background on linear DAE
systems is given and we discuss the generalization of the
‘‘internal stability’’ concept to DAE systems. Subse-
quently a LMI analysis result for general quadratic per-
formance is given. Bymeans of this result it is possible, for
a given controller, to efficiently decide, whether or not a
closed loop system in DAE form meets the performance
requirements. Also the structure of the LMI solution
connected to this problem will be examined. Based on
these results a direct treatment of the synthesis problem in
the next section is possible: with the controller being
unknown, the analysis result formally becomes a non-
linear matrix inequality. However, the presented lineariz-
ing change of variables approach reveals, that the problem
can be reduced to a strict LMI problem. We consider the
computational implications of the derived synthesis result
and finally discuss the possible range of applications.

2. Background on linear DAE descriptions

We consider input–output descriptions in DAE form

E�
:
tð Þ ¼ A� tð Þ þ Bw tð Þ; t50; � 0	ð Þ ¼ �	

0

z tð Þ ¼ C� tð Þ þDw tð Þ: ð3Þ

Here N (t)2Rnx denote the generalized state variables,
w(t)2Rnw the external input variables, and z(t)2Rnz the

external output variables. E, A, B, C, D are constant
system matrices of appropriate dimensions with E being
a possibly singular n	
n	 matrix with n	5rank(E)=: r.
In contrast to standard linear systems with E=I (3) with
rank(E)<n	 may have no solution, one solution, or even
multiple solutions. In general the solutions exhibit
impulsive behavior (i.e. are generalized solutions [2])
even if the inputs w(.), u(.) are continuous [1]. A neces-
sary and sufficient condition for the existence and
uniqueness of a solution is, that the pencil sE	A is reg-
ular, i.e. detðsE	 AÞ 6� 0 [1]. Regular DAE systems are
termed stable if sjs 2 C; det sE	 Að Þ ¼ 0

� �
� C

	 [1]. If
the pencil sE-A is singular, i.e. detðsE	AÞ 6� 0 it can be
shown [6] that the unforced (w �ð Þ ¼ 0; u �ð Þ ¼ 0) DAE
system admits non-trivial solutions to the homogeneous
initial value problem. Therefore the following sub-
stituteof the term ‘‘internal stability’’ seems natural [10].

Definition 2.1. A DAE system is said to be admissible if
it is regular, stable, and has no impulsive solutions.1

3. General quadratic performance: analysis LMIs

An LMI based sufficient condition for admissible
DAE systems ðE;A;B;C;DÞ [abbreviation of (3)] which
admit a general quadratic performance bound is given
in the following proposition:

Proposition 3.1. The DAE system ðE;A;B;C;DÞ is
admissible and has general quadratic performance if there
exists a matrix X such that the linear matrix inequalities
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hold true.

Proof. Assume (4) and (5) hold true for some matrix X.
Define V �ð Þ :¼ �TETX�. Differentiation along trajec-
tories of (3) renders

d

dt
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1 In view of the Weierstrass canonical form [6] of a DAE system we

frequently use the term ‘‘index one system’’ in stead of ‘‘regular system

without impulsive solution’’.
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