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a b s t r a c t

Iterative learning control (ILC) is a simple and efficient solution to improve tracking accuracy for systems that
execute repetitively the same tracing operation. For engineering applications of ILC, the main concern is the
monotonic decay of tracking errors, in the sense of infinity norm or peak error, along the trials. Low cost in
implementation and robustness in performance are also critical factors. To achieve these important but
sometimes contradicting goals, several multirate ILC schemes have been developed, in which different data
sampling rates are used for feedback online loop and feedforward ILC offline loop. That is, multirate ILC uses a
different (often lower) rate from the sampling rate of a feedback system to update input. Before the input signal
is applied to the system for the next trial, it is upsampled to reach the original sampling rate. Since
downsampling will cause distortion of frequency spectra, anti-aliasing and anti-imaging filters and signal
extension are used together with downsampling and upsampling operations. In this paper, these technologies
are integrated with three different multirate ILC schemes, pseudo-downsampled ILC, two-mode ILC, and cyclic
pseudo-downsampled ILC, to achieve better performance. A series of experimental results on an industrial
robot are presented to demonstrate the efficiency of multirate ILC schemes and compare the performance. The
results demonstrate that multirate ILC schemes are able to achieve not only monotonic learning transient, but
also much better tracking accuracy than conventional one-step-ahead ILC schemes.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Iterative Learning Control (ILC) is an approach to find appro-
priate control input for systems that execute the same tracking
task repeatedly. It aims to force the output of these systems to
follow a trajectory yd(t) defined over a finite time duration T. With
technology development, tracking accuracy requirements have
come to nano- or micro-meter level. Feedback control alone is
often not enough to achieve accuracy at this level due to modeling
uncertainties and various disturbances. ILC provides a simple and
effective feedforward channel to significantly improve the tracking
accuracy with low cost.

The basic idea of ILC is to update the input through the
recorded tracking error in a previous trial, or iteration. ILC is a
batch processing process. After the execution of one trial, the input
and error signals are recorded in the memory. Before the start of

the next iteration, feedforward ILC controller offline updates the
input signal. When the next iteration starts, the calculated input
signal is applied to the system. The features of batch processing
and off-line calculation enable ILC to employ techniques that
cannot be used in real time, such as non-causal filtering.

The ILC update law has the general recursive form as

ujþ1 ¼Hðuj; ejÞ ð1Þ

where H is the ILC input update function; tracking error is
ej ¼ yd�yj with yd and yj being the desired trajectory and actual
trajectory of the jth iteration, respectively. The objective is to make
ej converge to zero as iterations go to infinity. To describe ej in a
trial with a finite time duration or a finite number of sampling
points, a certain norm Jej J is used. Therefore, ILC aims to achieve
limj-1 Jej J-0. Note that ILC is a two-dimensional problem.
On the one hand, the system performs the finite-time tracking
command on the time axis. On the other hand, ILC adjusts
the input to the system on the iteration axis. Time and iteration
index are two independent variables (Elci, Longman, Phan, Juang,
& Ugoletti, 2002).
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Generally speaking, there are two configurations of the ILC
scheme. The first one is parallel configuration (Bristow, Tharayil, &
Alleyne, 2006; de Roover & Bosgra, 2000), in which ILC adjusts the
commands to the plant directly. The second one is serial config-
uration (Longman, 2000), in which ILC adjusts the commands
given to the existing closed-loop feedback control system. It has
been proved that these two configurations are mathematically
equivalent (Solcz & Longman, 1992). Since many commercial
products have feedback controllers and it is not desirable to open
the feedback control loops, the second configuration is relatively
easier for practical implementations.

When an iterative learning controller is designed, an important
issue that needs to be taken into account is the monotonic
convergence of tracking error along the iteration axis (Chang,
Longman, & Phan, 1992; Longman, 2000; Wang, 2000). As men-
tioned earlier, a proper norm is used to describe the tracking error
in a trail such that the convergence is considered in the sense of
this selected norm. It is well-known that ILC often shows bad
transient behavior. That is, the tracking error goes down in the
initial iterations but goes up again, usually to a very huge value,
before it finally converges to zero. The reason is that many
previous analyses are either in the α-norm or λ-norm. The
λ-norm for a function f(t) is ‖f‖λ9suptA ½0;T �e

�λtmaxjf ðtÞj with λ
being a positive scalar that usually needs to be sufficiently large.
The α-norm is defined as J f ð�ÞJα ¼ supkANf ðkÞαk with 0oαo1. In
the sense of these two norms, the error near the terminal phase of
the operations is much less weighted than those at the beginning
phase of the operations. Due to this decreasing weighting factor, a
huge overshoot of error can appear and indicate a bad conver-
gence performance in the sense of the 1-norm, given by
‖f ‖1 ¼ supkANf ðkÞ, even with the presence of a mathematical
convergence analysis with α-norm or λ-norm. To overcome this
bad transient behavior, the convergence should be investigated in
the 1-norm and many approaches have been developed (Frueh &
Phan, 2000; Jang, Chio, & Ahn, 1995; Kuc, Lee, & Nam, 1992; Lee-
Glauser, Juang, & Longman, 1996; Park & Bien, 2002; Ye, Wang,
Zhang, & Wang, 2009; Zhang, Wang, & Ye, 2009; Zhang, Wang, &
Ye, 2010).

The explanation in the frequency domain is that bad transient
behavior is due to high frequency error components violating
the condition of monotonic decay or the error signal contains a
component beyond the ILC system's learnable bandwidth (Zhang,
Wang, & Ye, 2005). A widely used method to achieve good learning
behavior is to introduce a low-pass filter (Chen & Moore, 2001;
Zhang, Wang, & Ye, 2009). However, ILC with such a filter will no
longer be able to achieve zero tracking since it cuts off high
frequency components. If desired performance requires elimina-
tion of error components in high frequencies, this method results
in poor tracking accuracy.

It is desirable, therefore, to develop ILC to guarantee both
transient behavior and high tracking accuracy in the form of
infinite norm. In Moore, Chen, and Bahl (2005), Moore et al.
derived an exponential convergence condition for P-type ILC and
they used time-varying gain to make the condition hold. For most
systems in use, the limitation is that the feedback controller is
encapsulated and the condition from Moore et al. (2005) often
cannot be satisfied. Redesign feedback controller to satisfy the
condition is inconvenient (Moore, Chen, & Bahl, 2002). Alterna-
tively, a simple solution to make the condition in Moore et al.
(2005) hold is to reduce the sampling rate. Since it is not easy to
change sampling frequency for most physical systems, multirate
ILC schemes are developed in which the sampled data are
processed at different rates. This will bring the design of ILC into
the multirate signal processing domain (Zhang, Wang, Wang, Ye, &
Zhou, 2008; Zhang, Wang, Ye, Wang, & Zhou, 2007, 2008; Zhang,
Wang, Ye, Zhou, & Wang, 2010). Some other approaches using the

multirate concept include optimal ILC for multirate physical
systems and multirate model inverse (Oomen, Wijdeven, & Bosgra,
2009; Shiraishi & Fujimoto, 2010).

Another advantage of multirate ILC is that it is able to deal with
initial state error properly. The original definition of ILC problem
requires the same initial state of each iteration (Longman, 2000).
This makes analysis simple and makes zero-error tracking possi-
ble. However, this assumption may not hold for real systems
because the same initial state sometimes cannot be guaranteed
in practice. A research on continuous D-type ILC shows that initial
state error can make the learning process unstable (Lee & Bien,
1991). Some methods are proposed to achieve good learning
behavior with the presence of initial state error (Chen, Wen,
Gong, & Sun, 1999; Chen, Wen, Xun, & Sun, 1996; Hillenbrand &
Pandit, 2000; Sun & Wang, 2002; Wang, 2000).

It is worth noting that multirate control itself is not new and its
capabilities and limitations have been well-studied (Moore,
Bhattacharyya, & Dahleh, 1993). One limitation is the degradation
in the intersample behavior. This is also true for multirate ILC and
we will design novel ILC schemes to overcome this limitation.
Based on the work in Moore et al. (2005), several multirate ILC
schemes are developed and successfully applied to an industrial
robot system (Zhang, Wang, Wang, et al., 2008; Zhang et al., 2007;
Zhang, Wang, Ye, Zhou, & Wang, 2009; Zhang, Wang, Ye, et al.,
2008; Zhang, Wang, Ye, Zhou, et al., 2010). In these schemes, the
downsampling and upsampling cause distortion in signal fre-
quency spectra and deteriorate the learning performance. To solve
this problem, some considerations in data processing including
signal extension, anti-aliasing, and anti-imaging are investigated
in this paper and integrated with these schemes. The remainder of
the paper is organized as follows: Section 2 discusses the idea of
multirate ILC with its necessary signal processing techniques.
Section 3 enhances several multirate ILC schemes by applying
the techniques in Section 2. Each of them is followed by another
one having better tracking performance. Section 4 presents a
series of experimental results of the proposed multirate ILC
schemes and their performances are compared, which is followed
by concluding remarks in Section 5.

2. Downsampled learning

The downsampled learning can deal with both single input
single output (SISO) and multiple-input multiple-output (MIMO)
systems. For simplicity, consider a discrete-time linear single input
single output (SISO) system

xf ;jðkþ1Þ ¼ Af xf ;jðkÞþBf uf ;jðkÞþwf ;jðkÞ
yf ;jðkÞ ¼ Cf xf ;jðkÞþvf ;jðkÞ

(
ð2Þ

with a one-step-ahead learning law in serial configuration of ILC:

uf ;jðkÞ ¼ ydðkÞþuL;f ;jðkÞ
uL;f ;jþ1ðkÞ ¼ uL;f ;jðkÞþΓef ;jðkþ1Þ

(
ð3Þ

where kA ½0; p�1�, p is the number of total sampling points of a
given trajectory to be followed, state xf ;j is a n dimensional vector,
input uf ;j and output yf ;j are both scalars, subscript j is the iteration
index, f denotes the feedback system sampling rate, and wf ;j and
vf ;j are the repeated state disturbances and output disturbances,
respectively. The error is ef ;jðkÞ ¼ ydðkÞ�yf ;jðkÞ with yd as the
desired trajectory. Γ is the learning gain. It is worth noting that
for other ILC schemes, the downsampled learning scheme is also
applicable.

With the assumption of same initial state for all trials, we have

ef ;jþ1 ¼Qef ;j ð4Þ
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