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In this paper, design and comparative analysis of adjustable window functions based cosine modulated
filter banks are analyzed. Four adjustable windows, viz., Kaiser window, Saramäki window, ultraspherical
windows and Roark’s transitional window are used to design prototype filters. Reconstruction error,
which is used as an objective function, is minimized by optimizing the cutoff frequency of designed
prototype filters. The gradient based iterative optimization algorithm is used. These optimized filters are
later cosine modulated to obtain filter banks. The performances of filter banks are compared on the basis
of reconstruction error and aliasing error.
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1. Introduction

The multirate filter banks find variety of applications in sub-
band coding, transmultiplexing, image and video or audio com-
pression, spectral estimation, biosignal processing, and adaptive
signal processing. The elementary block in realization of such
applications is cosine modulated filter banks (CMFBs), in which
analysis and synthesis filter banks are obtained by cosine mod-
ulated versions of lowpass prototype filter [1–3], Fig. 1. This
scheme is popular for its ease of designing high-selective and
high-discrimination systems. Also, since analysis and synthesis fil-
ter banks are generated by the lowpass prototype filter, the entire
design of the filter bank is reduced to the design of the prototype
filter. Therefore, during the design phase, it is required to optimize
the coefficients of the prototype filter only. This significantly re-
duces the complexities and computational overheads.

Suppose the prototype filter P (e jω) is a low pass linear phase.
The quality of reconstructed signal depends on how closely P (e jω)

satisfies the following two conditions:∣∣P
(
e jω)∣∣ = 0 for |ω| > π/M (1)

and∣∣T (
e jω)∣∣ = 1 for 0 < ω < π/M

where T
(
e jω) =

2M−1∑
k=0

∣∣P
(
e j(ω−kπ/M)

)∣∣2
(2)

where M is the number of channels.
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If (1) is satisfied exactly, there is no aliasing between nonad-
jacent bands, while if (2) is satisfied exactly, amplitude distortion
is completely eliminated in the combined analysis/synthesis filter
bank system. Aliasing between the adjacent bands is eliminated by
selecting appropriate phase factor in the modulation [3]. Unfortu-
nately, it is not possible to design a finite length filter that exactly
satisfies the constraints of (1) and (2). Hence the filter bank that
provides approximate or near-perfect reconstruction (NPR) is de-
signed that approximately satisfies the constraints laid down in (1)
and (2). Different objective functions have been optimized using
linear optimization [4,5] as well as nonlinear optimization tech-
niques [6,7].

2. Filter bank design

The analysis and synthesis filter banks are based on cosine
modulation of P (e jω). The prototype filter with desired character-
istics can be easily designed by window technique.

2.1. Window technique

The impulse response of the ideal low pass filter with cutoff
frequency ωc is given as

hid(n) = sinωcn

πn
, −∞ < n < ∞ (3)

hid(n) extends from −∞ to +∞, is not absolutely summable
and, therefore, unrealizable [8]. Hence, shifted impulse response
of hid(n) will be

hid(n) = sin(ωc(n − 0.5N))

π(n − 0.5N)
, n ∈ Z (4)
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Fig. 1. M-channel maximally decimated filter bank.

For making a causal filter, direct truncation of infinite-duration
impulse response of a filter results in large passband and stop-
band ripples near transition band. These undesired effects are well
known Gibbs’ phenomenon. However these effects can be signifi-
cantly reduced by appropriate choice of smoothing function w(n).
Hence, a filter p(n) of order N is of the form [9]:

p(n) = hid(n)w(n) (5)

where w(n) are the time domain weighting functions or window
functions. Window function is of limited duration in time domain,
which approximates band limited function in frequency domain.
Window functions are broadly categorized as fixed and adjustable
windows. In fixed window, the window length N governs main-
lobe width. Adjustable window has two or more independent pa-
rameters that control the window’s frequency response character-
istics.

2.2. Adjustable window functions

2.2.1. Kaiser window
Kaiser window [10,11] achieves close approximations to the

discrete prolate functions, which have a maximum energy concen-
tration in the main lobe relative to that of the side lobes.

The window function w(n) for Kaiser window is given as [8]:

w(n) =
{

I0{β
√

1−(n/N)2}
I0(β)

; 0 � n � N
0; otherwise

(6)

where I0(.) is the zeroth-order modified Bessel function, which can
be computed as:

I0(x) = 1 +
∞∑

k=1

(
(0.5x)k

k!
)2

(7)

Parameter β for desired As and filter order N , an appropriate cho-
sen transition bandwidth �ω, can be estimated as:

β =
⎧⎨
⎩

0.1102(As − 8.7); As > 50

0.5842(As − 21)0.4 + 0.07886(As − 21); 21 � As � 50

0; As < 21
(8)

N ≈ As − 7.95

14.36�ω/2π
(9)

2.2.2. Saramäki window
This window [12,13] is also close approximation to discrete pro-

late functions. Compared to Kaiser window, it has the advantage
of having analytical expression in both the frequency and time
domains. Further, no power series expressions are needed in eval-
uating the window functions. The FIR filters obtained are slightly

better than those obtained using Kaiser window. The window func-
tion w(n) for the window is given as:

w(n) = v0(n) + 2
N∑

k=1

vk(n) (10)

and

N = As − 8.15

14.36(ωs − ωp)/π
(11)

vk(n) can be calculated according to the following recursion rela-
tions:

v0(n) =
{

1; n = 0
0; otherwise

(12a)

v1(n) =
{

γ − 1; n = 0
γ /2; |n| = 1
0; otherwise

(12b)

and

vk(n) =
{2(γ − 1)vk−1(n) − vk−2(n) + γ [vk−1(n − 1)

+ vk−1(n + 1)]; |n| � k
0; otherwise

(12c)

Parameter γ can be computed as

γ = 1 + cos 2π
2N+1

1 + cos 2βπ
2N+1

(13)

with

β =

⎧⎪⎨
⎪⎩

0.000121(As − 21)2 + 0.0224(As − 21)

+ 1; 21 � As � 65
0.033As + 0.062; 65 < As � 110
0.0342As − 0.064; As > 110

(14)

2.2.3. Ultraspherical window
These windows are based on orthogonal polynomial known as

Gegenbauer or ultraspherical polynomial. These polynomials have
a close relationship with Jacobi polynomial and Chebyshev poly-
nomial. The window has three control parameters with additional
capability of generating variety of sidelobe patterns.

The coefficients of ultraspherical windows can be generated as:

w(nT )

= 1

N

[
Cα

N−1(x0) +
(N−1)/2∑

i=1

Cα
N−1

(
x0 cos

iπ

N

)
cos

(
2nπ i

N

)]

(15)

where Cα
N (x) is the ultraspherical polynomial of degree N defined

by recursion relationship



http://isiarticles.com/article/28043

