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Abstract

In this paper, we present RApYBAN (Reliability Analysis with DYnamic BAyesian Networks), a software tool which allows to analyze a
dynamic fault tree relying on its conversion into a dynamic Bayesian network. The tool implements a modular algorithm for
automatically translating a dynamic fault tree into the corresponding dynamic Bayesian network and exploits classical algorithms for the
inference on dynamic Bayesian networks, in order to compute reliability measures. After having described the basic features of the tool,
we show how it operates on a real world example and we compare the unreliability results it generates with those returned by other

methodologies, in order to verify the correctness and the consistency of the results obtained.

© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The modeling possibilities offered by fault trees (FT),
one of the most popular techniques for dependability
analysis of large, safety critical systems, can be extended by
relying on Bayesian networks (BN) [1-5]. This formalism
allows to relax some constraints which are typical of FTs.
In addition, BNs allow to represent local dependencies and
to perform both predictive and diagnostic reasoning.

In [6], we have shown how BNs can provide a unified
framework in which also dynamic fault trees (DFT) [7], a
rather recent extension to FTs able to treat several types of
dependencies, can be represented.

In particular, DFTs introduce four basic (dynamic)
gates: the warm spare (WSP), the sequence enforcing
(SEQ), the functional dependency (FDEP) and the priority
AND (PAND). A WSP dynamic gate models one primary
component that can be substituted by one or more backups
(spares), with the same functionality (see Fig. 1(a), where
spares are identified by “circle-headed” arcs). The WSP
gate fails if its primary fails and all of its spares have failed
or are unavailable (a spare is unavailable if it is shared and
being used by another spare gate). Spares can fail even
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while they are dormant, but the failure rate of an
unpowered (i.e. dormant) spare is lower than the failure
rate of the corresponding powered one. More precisely,
being 4 the failure rate of a powered spare, the failure rate
of the unpowered spare is al, with 0<a<1 called the
dormancy factor. Spares are more properly called “hot” if
o =1 and “cold” if & = 0.

A SEQ gate forces its inputs to fail in a particular order:
when a SEQ is found in a DFT, it never happens that the
failure sequence takes place in different orders. SEQ gates
can be modeled as a special case of a cold spare [8], so they
will not be considered any more in the following.'

In the FDEP gate (Fig. 1(b)), one trigger event T
(connected with a dashed arc in the figure) causes other
dependent components to become unusable or inaccessible.
In particular, when the trigger event occurs, the dependent
components fail with p; = 1; the separate failure of a
dependent component, on the other hand, has no effect on
the trigger event. FDEP has also a non-dependent output,
that simply reflects the status of the trigger event and is
called dummy output (i.e. not used in the analysis).

We have generalized the FDEP by defining a new gate,
called probabilistic dependency (PDEP). In the PDEP, the

'The conceptual difference between the two kinds of gates is that the
inputs to a SEQ do not need to be a component and its set of spares, but
can be components covering any kind of function in the FT.
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Fig. 1. Dynamic gates in a DFT.

probability of failure of dependent components, given that
the trigger has failed, is py<1.

Finally, the PAND gate reaches a failure state if and
only if all of its input components have failed in a
preassigned order (from left to right in graphical notation).
While the SEQ gate allows the events to occur only in a
preassigned order and states that a different failure
sequence can never take place, the PAND does not force
such a strong assumption: it simply detects the failure order
and fails just in one case (in Fig. 1(c) a failure occurs iff A
fails before B, but B may fail before A without producing a
failure in G).

The quantitative analysis of DFTs typically requires to
expand the model in its state space, and to solve the
corresponding continuous time Markov chain (CTMC) [7].
Through a process known as modularization [9], it is
possible to identify the independent sub-trees with dynamic
gates, and to use a different Markov model (much smaller
than the model corresponding to the entire DFT) for each
one of them. Nevertheless, there still exists the problem of
state explosion.

In order to alleviate this limitation, as stated above, we
have proposed a translation of the DFT into a dynamic
Bayesian network (DBN). With respect to CTMC, the use
of a DBN allows one to take advantage of the factorization
in the temporal probability model. As a matter of fact, the
conditional independence assumptions implicit in a DBN
enable a compact representation of the probabilistic model,
allowing the system designer or analyst to avoid the
complexity of specifying and using a global-state model
(like a standard Markov Chain); this is particularly
important when the dynamic module of the considered
DFT is significantly large.

In this paper, we describe RapYBAN (Reliability Analysis
with DYnamic BAyesian Networks), a tool we have
implemented able to realize an automatic translation of a
DFT into the corresponding DBN. The tool allows the
reliability engineer to access the modeling constructs of an
enhanced version of the DFT formalism for the construc-
tion of the suitable reliability model; the resulting model is
then compiled in the corresponding DBN and the analysis
is performed in a transparent way to user, who has just to
specify the desired type of analysis algorithm.

The rest of the paper is organized as follows: In Section 2
we briefly review the basic framework of DBNs, in Section
3 we describe the main functionalities of RADYBAN, by
taking into consideration in particular the translation from
a DFT to a DBN for the computation of reliability
measures, and finally in Section 4, we show an application
of the tool features to a real world example taken from [2],
concerning an active heat reaction system. Conclusions and
future works are then reported in Section 5.

2. Dynamic Bayesian networks

DBNs [10] extend the BNs formalism by providing
an explicit discrete temporal dimension. They represent
a probability distribution over the possible histories of a
time-invariant process; the advantage with respect to
a classical probabilistic temporal model like Markov chains
is that a DBN is a stochastic transition model factored over
a number of random variables, over which a set of
conditional dependency assumptions is defined.

Time invariance ensures that the dependency model of
the variables is the same at any point in time. While a DBN
can in general represent semi-Markovian stochastic pro-
cesses of order k — 1, providing the modeling for k£ time
slices, the term DBN is usually adopted when k =2 (i.e.
only two time slices are considered in order to model the
system temporal evolution; for this reason such models are
also called 2-TBN or 2-time-slice temporal Bayesian
network).

Given a set of time-dependent state variables X ... X,
and given a BN N defined on such variables, a DBN is
essentially a replication of N over two time slices ¢ and
t+ A (A being the so-called discretization step usually
assumed to be 1), with the addition of a set of arcs
representing the transition model. Letting X’ denote the
copy of variable X; at time slice ¢, the transition model is
defined through a distribution PLX*"| X!, Y', Y'*4] where
Y’ is any set of variables at slice 7 other than X; (possibly
the empty set), while Y4 is any set of variables at slice
t + A other than X; (Y*4 is non-empty only in the case of
the PDEP gate conversion). Arcs interconnecting nodes at
different slices are called inter-slice edges, while arcs
interconnecting nodes at the same slice are called intra-
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