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a b s t r a c t

This paper has been written in order to apply Bayesian network modelling to a maintenance and

inspection department. The primary aim of this paper is to establish and model the various parameters

responsible for the failure rate of a system, using Bayesian network modelling, in order to apply it to a

delay-time analysis study. The use of Bayesian network modelling allows certain influencing events to

be considered which can affect parameters relating to the failure rate of a system. Bayesian network

modelling also allows these influencing events to change and update depending on the influencing data

available at any given time, thus changing the failure rate or probability of failure. A methodology has

been developed and applied to a case study in order to demonstrate the process involved.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

When using delay-time analysis to develop a maintenance or
inspection model, the need for both relevant and accurate data is
vital to the success of the task [1]. The information required in
order to carry out such a modelling exercise is gathered from
historical data and/or from expert judgement. This information is
used to calculate the variables needed to apply delay-time
analysis. The variables include:

� average downtime due to inspection, d;
� average downtime for a breakdown repair, db;
� arrival rate of defects per unit time, kf;
� failure rate l (1/MTBF);
� inspection period, T.

Downtime due to inspection, d is the amount of time, on
average, an inspection will take to complete and return the
equipment to production. The average downtime due to a
breakdown and subsequent repair of the equipment db is the
time it takes on average to return the equipment to production.
The units of both downtime inspection and breakdown repair
downtime must be identical but can be measured in hours, days
or months depending on the equipment under investigation. The
arrival rate of a defect, kf is the average time a defect arises over a

period of time, calculated by the number of defects divided by the
total operating time of the equipment under investigation. Failure
rate l is the reciprocal of mean time between failure (MTBF)
where MTBF is the mean operating time between failures of a
component or piece of equipment. MTBF, however, should not be
confused with the delay-time h of a component or piece of
equipment. The delay-time h is the time from an initial telltale
sign of failure to actual failure, both being dependant on the
inspection interval, T.

Given the above information, an expected downtime per unit
time function D(T) can be obtained as follows [2,3]:

DðTÞ ¼
dþkf T½ð1=TÞ

R T
0 ðT�hÞle�lhdh�db

Tþd

( )
ð1Þ

Looking at the variable failure rate l (1/MTBF), the information
required to populate this is based on statistical averages. For
example, if a machine or piece of equipment has experienced 10
breakdowns over a period of 1 year this would result in a failure
rate of 0.027 failures/day (MTBF 37 days). To further expand on
this example, suppose 70% of the breakdowns occurred during the
first 3 months of operation, with only 1 breakdown experienced
during the last 2 months of operation. Calculating these figures
into failure rates highlights the inadequacy of relying on averages
when gathering data of this type [4]. Specifically, the failure rate
for the first 3 months is that of 0.077 failures/day (MTBF 13 days)
but the failure rate for the last 2 months is 0.016 failures/day
(MTBF 63 days). Although the average failure rate of 0.027 fail-
ures/day (MTBF 37 days) is correct for average breakdowns it may
not be adequate to portray the actual situation. Continuing with
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this example, there may be a number of influencing factors
that have been responsible for the varying failure rates over the
12-month period. For example, poor reliability of equipment may
be encountered due to incorrect installation. Conversely, im-
provements in the design of the equipment may improve the
reliability of the equipment. Other typical influencing factors for
this example might include [3]:

� poor initial implementation of equipment;
� improvements in inspection procedure;
� improvements in maintenance personnel training;
� renewal of key components;
� changes to inspection intervals.

A modelling technique capable of appreciating the differing
influencing factors, which could affect an event or variable is that
of Bayesian network modelling. Bayesian network modelling is a
simple mathematical formula for calculating conditional and
marginal probabilities of a random event. Conditional probability
is the probability of an event given the occurrence of an
influencing event, whereas marginal probability is the uncondi-
tional probability of an event. Bayesian network modelling can
also deal with subjective probability, which may represent the
degree of belief from an expert, and apply it in a precise and
relevant manner.

2. Applications of Bayesian network modelling

Bayesian network modelling is an artificial intelligence tool
used to model uncertainty in a domain or system [5]. Bayesian
network modelling can help in identifying the relationships
between variables, given uncertainty, in a system. The identifica-
tion of critical variables whilst taking into account other
influencing factors is also a valuable feature of Bayesian model-
ling. Uncertainty in any system can be due to factors such as

� inadequate understanding of the system;
� incomplete knowledge of the system at a point in time;
� the system or parts of the system behaving in a random

manner.

The use of Bayesian network modelling is wide-ranging,
covering a multitude of industries and applications. The nature
of Bayesian network modelling offers a flexible solution to
problems, allowing incremental adjustments to influencing vari-
ables and probabilities. This section will examine several relevant
case studies in order to demonstrate the varying uses and
applications, highlighting both the benefits as well as the
drawbacks when using Bayesian network modelling.

The use of oil tankers in the shipping industry is common,
where safety is of paramount importance. One of the main risks
is that of collisions between tankers and floating production
storage and offloading (FPSO) vessels. FPSOs are used when an oil
platform is in a remote or deepwater location where seabed
pipelines are not cost effective. The process involves pumping oil
from the oil rig, transferring it to the FPSO then onto an oil tanker.
Numerous collisions between FPSOs and oil tankers have occurred
in the North Sea in recent years [6]. A study was carried out
examining system safety of FPSOs using Bayesian network
modelling techniques [7,8]. The study examined the transfer of
oil from an FPSO to an oil tanker. Collision rates were established
relating to the varying ways a collision may occur. A fault tree
analysis (FTA) was carried out in order to estimate the frequency
of collisions for an FPSO, with additional information gathered

from statistical reports. A Bayesian network model was then
created to model the scenario using Hugin software [19]. The
model developed gave two influencing nodes: ‘shuttle tanker’ and
‘support vessel’ with one influenced node ‘collision FPSO’, with
both influencing nodes connecting to the node ‘collision FPSO’.
The model was run, giving figures of 5% probability of ‘impact’ and
a 95% probability of ‘no-impact’ for ‘collision FPSO’. Given the
flexible nature of Bayesian network modelling, a scenario was
then initiated in the model whereby the probability of impact was
increased to 100%. The probability of loss of shuttle tanker went
up from 7% to 50% with the support vessel failure probability
rising from 24% to 65%. Given this scenario, several nodes were
added including oil spillage, explosion and human injury. The
importance of this is that given a certain event happening
(100% probability) other factors either influencing or influenced
by the event can be considered in the overall risk analysis. For
this example these may include weather conditions, oil spillage,
flooding and human error, although human error may be
considered to have an influencing effect on most industries in
one way or another.

An important aspect to consider when developing Bayesian
network models is the complexity of the model. The model can
describe complex problems by generating information about their
structure, giving an understanding of the system structure [9].
Given this, an important attribute of Bayesian network modelling
is its ability of coping with a system of high complexity through
modularity. This is achieved by splitting the problem into smaller
problem network models, which are solved separately helping to
acquire solutions to the larger problem [10]. The use of Bayesian
network modelling for optimising preventative maintenance
modelling was developed to a limited amount in a petrochemical
case study [11]. Preventative maintenance is a maintenance
activity aimed at reducing the occurrence and/or severity of
failure in a system. In contrast to preventative maintenance is that
of corrective maintenance. With corrective maintenance repairs
are carried out only after failure has taken place in the system.
This study looked at analysing the renewal process with
exponential distribution times to failure using Bayesian model-
ling. The use of Bayesian modelling allowed the prediction of the
probability distribution for downtime and the amount of
corrective repairs necessary, which ultimately gave a cost per
unit time. There was no comparison drawn between this study
and that of traditional methods to establish a failure probability
distribution. It did however highlight the need for inclusion of
prior knowledge using a Bayesian methodology in order to derive
probability distributions. This served to reduce the reliance on
estimation of parameters which traditionally takes place, allowing
optimal decisions regarding maintenance intervals to be estab-
lished. Several assumptions were made in this study including:
each maintenance activity having the same downtime duration
and each corrective repair having the same downtime duration.
These assumptions may be too restrictive in reality but this
example illustrates the use of applying Bayesian network
modelling to establish a probability distribution to enhance
another maintenance modelling exercise.

A case study looking at reliability assessment during equip-
ment development of a weapon system using a Bayesian approach
has also been carried out [12]. This paper looked at an integrated
Bayesian approach to assess equipment reliability during the
development cycle. The integration process took information
relating to the engineering knowledge available and integrated
this with statistical results gathered from the testing program
giving a true quantitative viewpoint. Bayes’ theorem was applied
to evaluate the reliability achieved by updating the prior
distribution, showing the current reliability. This information
was used to assess and evaluate the effectiveness of design
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