Approximate inference in Bayesian networks using binary probability trees

Andrés Cano*, Manuel Gómez-Olmedo, Serafín Moral

Dept. Computer Science and Artificial Intelligence, Higher Technical School of Computer Science and Telecommunications, University of Granada, Granada 18071, Spain

ARTICLE INFO

Article history:
Available online 15 June 2010

Keywords:
Bayesian networks inference
Approximate computation
Variable elimination algorithm
Deterministic algorithms
Probability trees

ABSTRACT

The present paper introduces a new kind of representation for the potentials in a Bayesian network: binary probability trees. They enable the representation of context-specific independences in more detail than probability trees. This enhanced capability leads to more efficient inference algorithms for some types of Bayesian networks. This paper explains the procedure for building a binary probability tree from a given potential, which is similar to the one employed for building standard probability trees. It also offers a way of pruning a binary tree in order to reduce its size. This allows us to obtain exact or approximate results in inference depending on an input threshold. This paper also provides detailed algorithms for performing the basic operations on potentials (restriction, combination and marginalization) directly to binary trees. Finally, some experiments are described where binary trees are used with the variable elimination algorithm to compare the performance with that obtained for standard probability trees.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Bayesian networks are graphical models that can be used to handle uncertainty in probabilistic expert systems. They provide an efficient representation of joint probability distributions. It is known that exact computation [1] of the posterior probabilities, given certain evidence, may become unfeasible for large networks. As a consequence, improved algorithms and methods are continuously proposed to enable exact inference on larger Bayesian networks. For example, in [2] it is presented an alternative method for improving the time required for accessing the values stored in potentials (and producing substantial savings in computation time when performing combination, marginalization or addition operations on them); the paper in [3] describes some improvements to message computation in Lazy propagation. Unfortunately, even with these improvements inference on complex Bayesian networks may be still unfeasible. This has led to the proposal of different approximate algorithms. These algorithms provide results in shorter time, albeit inexact. Some of the methods are based on Monte Carlo simulation, and others rely on deterministic procedures. Some of the deterministic methods use alternative representations for potentials, such as probability trees [4–6]. This representation offers the possibility to take advantage of context-specific independences. Probability trees can be pruned and converted into smaller trees when potentials are too large, thus facilitating approximate algorithms. In the present paper, we introduce a new kind of probability trees in which the internal nodes always have two children. They will be called binary probability trees. These trees allow the specification of fine-grained context-specific independences in more detail than standard trees, and should work better than standard probability trees for Bayesian networks containing variables with a large number of states.

The remainder of this paper is organized as follows: in Section 2 we describe the problem of probability propagation in Bayesian networks. Section 3 explains the use of probability trees to obtain a compact representation of the potentials and
presents the related notation. In Section 4, we introduce binary probability trees and describe the procedure to build them from a potential, and how they can be approximated by pruning terminal trees; we also show the algorithms for direct application of the basic operations with potentials to binary probability trees. These algorithms are very similar to the algorithms for performing operations in mixed trees (trees with continuous and discrete variables) [7]. Section 5 provides details of the experimental work. Finally, Section 6 gives the conclusions and future work.

2. Probability propagation in Bayesian networks

Let \(X = \{X_1, \ldots, X_n\} \) be a set of variables. Let us assume that each variable \(X_i \) takes values on a finite set of states \(\Omega_{X_i} \) (the domain of \(X_i \)). We shall use \(x_i \) to denote one of the values of \(X_i \), \(x_i \in \Omega_{X_i} \). If \(I \) is a set of indices, we shall write \(X_I \) for the set \(\{X_i | i \in I\} \). The Cartesian product \(\times_{i \in I} \Omega_{X_i} \) will be denoted by \(\Omega_X \). The elements of \(\Omega_X \) are called configurations of \(X \) and will be represented as \(x \). We denote by \(x_I \) the projection of the configuration \(x \) to the set of variables \(X_I, X_I \subseteq X \).

A mapping from a set \(\Omega_X \) into \(\mathbb{R}_+^\#_I \) will be called a potential \(p \) for \(X \). Given a potential \(p \), we denote by \(s(p) \) the set of variables for which \(p \) is defined. The process of inference in probabilistic graphical models requires the definition of two operations on potentials: combination \(p_1 \otimes p_2 \) (multiplication) and marginalization \(p^{X_I} \) (by summing out all the variables not in \(X_I \)). Given a potential \(p \), we denote by \(\sum(p) \) the addition of all the values of the potential \(p \).

A Bayesian network is a directed acyclic graph, where each node represents a random event \(X_i \) and the topology of the graph shows the independence relations between variables according to the d-separation criterion [8]. Each node \(X_i \) has a conditional probability distribution \(p(X_i | I(X_i)) \) for that variable, given its parents \(I(X_i) \).

A Bayesian network determines a joint probability distribution:

\[
p(x) = \prod_{i \in N} p_i(x_i | \pi(x_i)) \quad \forall x \in \Omega_X,
\]

where \(\pi(x_i) \) is the configuration \(x \) marginalized on the parents of \(X_i \); \(I(X_i) \).

Let \(E \subseteq X_i \) be the set of observed variables and \(e \in \Omega_E \) the instantiated value. An algorithm that computes the posterior distributions \(p(x_i | e) \) for each \(x_i \in \Omega_{X_i}, X_i \in X_{\bar{E}} \), is called a propagation algorithm or inference algorithm.

3. Probability trees

Probability trees [9] have been used as a flexible data structure that enables the specification of context-specific independences (see [6]) and provides exact or approximate representations of probability potentials. A probability tree \(T \) is a directed labelled tree, in which each internal node represents a variable and each leaf represents a non-negative real number. Each internal node has one outgoing arc for each state of the variable that labels that node; each state labels one arc. The labelled tree, in which each internal node represents a variable and each leaf represents a non-negative real number. Each probability tree is usually a more compact representation of a potential than a table, because it allows an inference algorithm to take advantage of context-specific independences. This is illustrated in Fig. 1, which displays a potential \(p \) for performing operation in the basic operations with potentials to binary probability trees. These algorithms are very similar to the algorithms from a potential, and how they can be approximated by pruning terminal trees; we also show the algorithms for direct application of the basic operations with potentials to binary probability trees. These algorithms are very similar to the algorithms for performing operations in mixed trees (trees with continuous and discrete variables) [7]. Section 5 provides details of the experimental work. Finally, Section 6 gives the conclusions and future work.

\[
\begin{array}{ccc}
A & B & C \\
a_1 & b_1 & c_1 & 0.2 \\
a_1 & b_1 & c_2 & 0.5 \\
a_1 & b_2 & c_1 & 0.7 \\
a_1 & b_2 & c_2 & 0.7 \\
a_2 & b_1 & c_1 & 0.3 \\
a_2 & b_1 & c_2 & 0.5 \\
a_2 & b_2 & c_1 & 0.3 \\
a_2 & b_2 & c_2 & 0.3 \\
\end{array}
\]

![Fig. 1. Potential \(p \), its representation as a probability tree and its approximation after pruning several branches.](image)
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات