Running exercise delays neurodegeneration in amygdala and hippocampus of Alzheimer's disease (APP/PS1) transgenic mice

Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan
Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan
Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan
Department of Physiology, National Cheng Kung University, Tainan, Taiwan
Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan
Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan

Article history:
Received 19 August 2014
Revised 9 December 2014
Accepted 16 December 2014
Available online 24 December 2014

Keywords:
Alzheimer's disease
Hippocampus
Amygdala
Learning and memory
Exercise
Neuroplasticity

Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease. Post-mortem examination and brain imaging studies indicate that neurodegeneration is evident in the hippocampus and amygdala of very early stage AD patients. Exercise training is known to enhance hippocampus- and amygdala-associated neuronal function. Here, we investigated the effects of exercise (running) on the neuronal structure and function of the hippocampus and amygdala in APP/PS1 transgenic (Tg) mice. At 4-months-old, an age before amyloid deposition, the amygdala-associated, but not the hippocampus-associated, long-term memory was impaired in the Tg mice. The dendritic complexities of the amygdalar basolateral neurons, but not those in the hippocampal CA1 and CA3 neurons, were reduced. Furthermore, the levels of BDNF/TrkB signaling molecules (i.e. p-TrkB, p-Akt and p-PKC) were reduced in the amygdala, but not in the hippocampus of the 4-month-old Tg mice. The concentrations of A_{40} and A_{42} in the amygdala were higher than those in the hippocampus. Ten weeks of treadmill training (from 1.5- to 4-month-old) increased the hippocampus-associated memory and dendritic arbor of the CA1 and CA3 neurons, and also restored the amygdala-associated memory and the dendritic arbor of amygdalar basolateral neurons in the Tg mice. Similarly, exercise training also increased the levels of p-TrkB, p-AKT and p-PKC in the hippocampus and amygdala. Furthermore, exercise training reduced the levels of soluble Aβ in the amygdala and hippocampus. Exercise training did not change the levels of APP or RAGE, but significantly increased the levels of LRP-1 in both brain regions of the Tg mice. In conclusion, our results suggest that tests of amygdala function should be incorporated into subject selection for early prevention trials. Long-term exercise protects neurons in the amygdala and hippocampus against AD-related degeneration, probably via enhancements of BDNF signaling pathways and Aβ clearance. Physical exercise may serve as a means to delay the onset of AD.

1. Introduction

Alzheimer's disease (AD) is the most common cause of dementia in the elderly. Pathologically, AD is characterized by extracellular deposition of Aβ peptides in the amyloid plaques and intracellular accumulation of hyperphosphorylated tau in the neurofibrillary tangles. Biochemical and morphological studies suggest that neuronal synaptic connections are greatly reduced in AD brains (Larson, Lynch, Games, & Seubert, 1999; Small, Mok, & Bornstein, 2001). The most frequent and early clinical symptom of AD is memory impairment, in particular short-term memory (Albert et al., 2011; Thies & Bleiler, 2013). Atrophy of the medial temporal lobe, a critical region involved in memory formation, is a recognized marker for AD (Duara et al., 2008; Jobst et al., 1994). Volumetric measurements of the hippocampus and amygdala, both residing in the medial temporal lobe, have been used to predict the cognitive status of the elderly...
2. Materials and methods

2.1. Animals

All experimental protocols were carried out in accordance with the National Institutes of Health Guidelines for animal research (Guide for the Care and Use of Laboratory Animal) and approved by the National Cheng Kung University Institutional Animal Care and Use Committee. All efforts were made to minimize the number of animals used and their suffering. Congenic male and female APP/PS1 double transgenic [B6.Cg-Tg (APPsw, PSEN1DE9) 85Db/o; Mmjax] mice were purchased from the Jackson Laboratory (Bar Harbor, ME). The Tg mice express a chimeric mouse/human amyloid precursor protein (APP695swe) and a mutant human presenilin 1 (PSEN1DE9) with the exon 9 deletion under the control of mouse prion promoter elements (Jankowsky et al., 2004). The mice were bred and maintained on a B6C3 background. All mice were housed in a controlled environment (temperature 23 ± 1 °C; 12 h light/12 h dark cycle, light cycle begins at 06:00) in the Laboratory Animal Center of National Cheng Kung University with unrestricted access to food and water. Shortly after weaning, these mice were genotyped using a protocol provided by the Jackson Laboratory. Body weights were measured every three days.

Four sets of the mice were used in this study. The first set (n = 6) was subjected to behavior test (see below Pavlovian fear conditioning tasks). The second set (n = 6) was used to record the body weights and to collect the brains and soleus muscles for protein level determinations and citrate synthase activity assays, respectively. The third set (n = 6) was isolated for Aβ40 and Aβ42 quantifications. The fourth set (n = 5) was used to examine the neuronal morphology. Mice of the first set were killed by CO2 euthanasia after the behavior test, while the other three sets were anesthetized with ethyl carbamate (Urethane, Sigma, St. Louis, MO, 1.2 g/kg, i.p.) and perfused with 50 ml of cold normal artificial CSF (aCSF) for subsequent analyses. There were few occasions mice were excluded from the study because they were not compliant with the training or injured during the training.

2.2. Exercise protocols

The detailed protocol of treadmill exercise (Ex) training has been described elsewhere (Lin et al., 2012). At the age of six weeks, mice were first subjected to a one-week familiarization course to reduce handling- and environment-related stimuli, followed by a nine-week Ex training course. Starting from the second week, mice of the Ex group ran on a leveled motor-driven treadmill (Model T510E, Diagnostic and Research Instruments Co., Taoyuan, Taiwan) at the speed of 10 m/min for 20–60 min/day (with an increment of 10 min/day), five days per week for the first week. During the second to fourth weeks mice ran on the treadmill for 60 min per day at the same speed (10 m/min), five days per week. The treadmill speed increased 1 m/min per month reaching 12 m/min at the end of the training period. The front end of the treadmill was covered with a dark cloth to attract the mice to run forward. A gentle tail touch was sufficient to keep the mice running and the entire training process was carried out without tail shock. The sedentary (Sed) groups were placed on the treadmill for ten minutes each day without receiving any exercise training.

2.3. Measurement of citrate synthase activity

The training effect of Ex was determined by measuring citrate synthase activity in the soleus muscle as previously described (Wu et al., 2007). Briefly, the soleus muscle samples were homogenized in ice-cold 0.1 M of Tris–HCl containing 0.1% Triton X-100 buffer, pH 8.3, centrifuged at 14,000 g for 15 min at 4 °C, and the protein concentration of the supernatant was adjusted to 1.5 μg/μl. After adding dithionitrobenzoate, acetyl CoA and oxaloacetate to the supernatant, citrate synthase activity was determined at 412 nm and expressed as μmole of substrate utilized per minute per mg of protein.

2.4. Pavlovian fear conditioning tasks

Pavlovian fear conditioning and subsequent testing were performed to evaluate memories associated with hippocampus and/or amygdala. The responses to contextual conditioning reflect the functions of hippocampus and amygdala, while the responses to cued conditioning mainly depend on the function of amygdala.