Interference in simultaneously perceiving and producing facial expressions—Evidence from electromyography

Ellen Otte a,∗, Ute Habel b, Martin Schulte-Rüther c, Kerstin Konrad c, Iring Koch a

a Institute of Psychology I, RWTH Aachen University, Jägerstr. 17–19, D-52066 Aachen, Germany
b Department of Psychiatry and Psychotherapy, RWTH Aachen University, JARA Brain, Germany
c Department of Child and Adolescent Psychiatry and Psychotherapy, RWTH Aachen University, Germany

A R T I C L E I N F O
Article history:
Received 10 August 2010
Received in revised form 2 November 2010
Accepted 5 November 2010
Available online 12 November 2010

Keywords:
Common coding
Stimulus–response compatibility
Reaction time
Perceptual motor processes
Emotion
Facial expression

A B S T R A C T
The goal of the current studies was to examine perception–action interactions in a socially relevant domain. Social interactions are based on a mutual understanding of the emotions and actions of others. We assume that the perception of emotional actions also stimulates a parallel action preparation in the perceiver, underlining the common coding theory. We report two experiments aimed to examine whether the perception of socially relevant facial actions (e.g., happy vs. angry facial expressions) interact with the execution of such actions. More specifically, we use a stimulus–response compatibility paradigm, in which subjects responded to the gender of a face by either smiling or frowning while ignoring the fact that the presented face is also randomly either smiling or frowning. We measured reaction time (RT) as onset latency on the two large muscle groups used for smiling (zygomaticus major) and frowning (corrugator supercilii) using electromyography. Experiment 1 showed that on compatible trials, in which perceived facial expression and actually produced facial expression matched, RTs were shorter than on incompatible trials. Experiment 2 used pre-instructed (i.e., blocked) responses and replicated the compatibility effect, suggesting that the effect is functionally located not in response selection but in response initiation or execution. We discuss these results in relation to cognitive mechanisms of common coding of perception and action and to the human mirror neuron system.

© 2010 Elsevier Ltd. All rights reserved.

The study of the influence of action observation on cognition and behavior has a venerable tradition in several research fields. For instance, in social psychology it has been shown that observers can easily reproduce actions performed by a model (e.g., Bandura, 1977). More recent studies on imitation learning ascribe action observation a crucial role in human behavior in general (Brass & Heyes, 2005). Likewise, the field of cognitive psychology has demonstrated that observing other person’s actions has a profound influence on action coding in the observer (see Hommel, Müßeler, Aschersleben, & Prinz, 2001, for a review).

For example, in a study by Brass, Bekkering, Wohlschläger, and Prinz (2000), a hand was presented on the screen, and numbers were superimposed on the fingers. Subjects had to lift their index or middle finger in response to the presentation of a number 1 or 2, but the fingers on the screen also moved. The major finding was that reaction times (RTs) were shorter when the to-be-moved finger was the same as the finger that moved on the screen, even though finger movement on the screen was nominally irrelevant to the task. Hence, the task-irrelevant stimulus resulted in a tendency to imitate the observed action.

This interference effect can be considered an instance of the so-called “Simon” effect, in which an irrelevant spatial stimulus feature corresponds or does not correspond to the location of the required response and is thus part of a larger family of S–R compatibility effects (see, e.g., Proctor & Vu, 2006, for a review). Brass et al. (2000) extended the S–R compatibility paradigm to include real human movements that allow for the study of socially relevant behavior. Similar effects have been observed in a variety of other studies (see Brass & Heyes, 2005, for a review).

The study of action imitation also gained strong interest in the neurosciences. Rizzolatti and Craighero (2004) review evidence showing that cells in the premotor cortex of the monkey respond selectively both when the monkey performs an action and when he observes another monkey's action (so-called “mirror neurons”, see e.g., Binkofski & Buccino, 2006; Rizzolatti & Craighero, 2004, for reviews). It has been proposed that such a mirror neuron system also exists in the human brain (Binkofski et al., 2000; Buccino et al., 2001; Iacoboni et al., 1999; for reviews see Binkofski & Buccino, 2006; Iacoboni, 2009; Rizzolatti & Craighero, 2004). The human mirror neuron system is assumed to be involved in the understanding of other humans’ actions and associated with empathy and...
processing of others’ emotions (e.g., Gallese, Keysers, & Rizzolatti 2004; Jacob & Jeannerod, 2005; Schulte-Rüther, Markowitsch, Fink, & Piefke, 2007; Sommerville & Decety, 2006) and is thus relevant for social cognition in general (Gallese et al., 2004; Iacoboni & Dapretto, 2006, for a review).

The present study aimed at studying the role of observing another person’s action with respect to its social and emotional valence and to see how it affects the observer’s action. To this end, we had subjects produce facial expressions (frowning vs. smiling), using electromyography (EMG) to measure the movement onset of facial muscle activity, while they observed the facial expression of a stimulus person. This paradigm fits nicely with the affective Simon paradigm as introduced by De Houwer, Hermans, & Eelen (1998), who showed that compatibility effects occur when using affective stimuli of which the affective value had to be ignored.

Studies reveal that when people are exposed to facial expressions they spontaneously react to these expressions with similar facial expressions (Dimberg, Thunberg, & Elmenhajd, 2000; Lundqvist, 1993; Wild, Ehr, & Bartels, 2001). Darwin (1872) already argued that emotional expressions have a biological basis (Ekman, 1973; Izard, 1977; Tomkins, 1962) and that we are inclined to generate distinct facial muscle reactions as a response to both social stimuli (Dimberg, 1990, 1997) and non-social stimuli (Dimberg, 1986). Dimberg, Thunberg, and Grundel (2002) proposed that there are four factors that are based on automatic processes. For example, they observed the facial expression of a person who was smiling or frowning. The images were presented full screen. After 500 ms, a brief auditory warning signal was presented indicating the imperative stimulus for producing a happy or angry facial expression (see Fig. 1). The stimuli were presented on a 19 inch monitor (35 cm × 25 cm) at a distance of approximately 70 cm from the participants. The experiment was written in MATLAB 2008a, using the psychtoolbox 3 (Brainard, 1997; Pelli, 1997).

1.2. Stimuli and apparatus
Twenty-four professional actors from local theatre schools were asked to help in creating an emotional expression database. The actors were instructed and trained on the 6 basic emotions and subsequently videotaped. Videos were analyzed using the FACS coding system to assure that the appropriate muscles were used. In addition, the videos were rated by 69 students on affect, clarity, and realism of the emotions and emotional expressions. We only used videos of those actors with high ratings (90% or higher) on all categories. We extracted static images of the emotional expressions at their peak to use in the current experiment. For the experiment we used eight stimuli, showing two male and two female actors, each both either with a happy or angry facial expression (see Fig. 1). The stimuli were presented full screen on a 19 inch monitor (35 cm × 25 cm) at a distance of approximately 70 cm from the participants. The experiment was written in MATLAB 2008a, using the psychotoolbox 3 (Brainard, 1997; Pelli, 1997).

1.2.1. Procedure
Participants were instructed to produce a happy or angry facial expression as fast as possible in response to either a male or a female face. The mapping of gender of the stimulus person (female vs. male) and the required facial response (smile vs. frown) was counterbalanced across participants. Moreover, we also counterbalanced for gender effects, meaning both of the male and female participants were instructed to smile at female images, whereas the other half was instructed to smile at male images.1

The experiment started with a white fixation cross in the center of the screen. After 500 ms, a brief auditory warning signal was presented indicating the start of the trial. After another 500 ms, an image appeared on the screen depicting either a female or a male face with either a ‘happy’ or an ‘angry’ facial expression. The image was visible for 1000 ms, after which the fixation cross reappeared. The participant had another 2500 ms after stimulus offset to respond and to relax their facial muscles again. Finally, they had to indicate the end of the trial by a key press to initiate, after 500 ms, the next trial. We presented 4 experimental blocks, each containing 40 randomized trials with an equal amount of happy/angry expressions.
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات