
Virtual organizational learning in open source software development projects

Yoris A. Au *, Darrell Carpenter, Xiaogang Chen, Jan G. Clark

Department of Information Systems and Technology Management, College of Business, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA

1. Introduction

Many people can work together on a task regardless of time,
geographic location, or organizational affiliation by adopting a
virtual approach [14]. Open source software (OSS) development
projects exhibit many of the characteristics that make virtual
organizations successful, including self-governance, a powerful
set of mutually reinforcing motivations, effective work struc-
tures and processes, and technology for communication and
coordination. Examples of thriving OSS projects include Linux,
Apache, and Mozilla. Although seemingly disorganized, and
lacking monetary incentives, the development approach is
characterized by design simplicity, team work, a visible product,
and communication.

But what makes OSS development projects successful? Mockus
et al. [13] conducted a case study on the Apache Web server and
Mozilla Web browser projects to learn their development process
characteristics; they found that projects based on a relatively small
core of developers (10–15 people) could be geographically
dispersed, yet communicate and function without conflict via a
set of implicit coordination mechanisms (i.e. informal email
exchange). However, when the number of core developers
exceeded this size, other explicit coordination mechanisms (e.g.,

a code ownership policy) had to be adopted. In a similar study,
Huntley [9] used organizational learning to explain the success of
OSS projects; he maintained that it decreased time in fixing bugs.
However, there were significant debugging differences in Apache
and Mozilla, with project maturity as the apparent reason, as
opposed to other factors such as project size and number of
programmers. Debugging data were modeled to fit a learning
curve. Mozilla, an emerging project, was characterized as having
improvements due to learning effects present in their team. Both
these authors pointed out significant differences between the
projects.

Our intent was to extend and refine their work by including a
much larger number of OSS development projects of varying size
(in terms of the number of developers involved) and type (from
simple file management software to complex enterprise software
suite). Specifically, we included 118 OSS projects in our sample. By
focusing on multiple projects of varying size and type, we were
better able to characterize OSS projects. Our study was initiated to
answer the following research questions:

(1) Are learning effects universally present in OSS projects?
(2) What are the factors that affect the learning process?

We used the number and percentage of resolved bugs and bug
resolution time to measure learning effects. However, we also
looked at how different project types, number of developers
(project team size) and their experience, and the intensity of

Information & Management 46 (2009) 9–15

A R T I C L E I N F O

Article history:

Received 3 May 2007

Received in revised form 23 May 2008

Accepted 26 September 2008

Available online 28 November 2008

Keywords:

Virtual organizational learning

Organizational learning curve

Virtual organization

Open source software

Software development

Project performance

A B S T R A C T

We studied virtual organizational learning in open source software (OSS) development projects.

Specifically, our research focused on learning effects of OSS projects and the factors that affect the

learning process. The number and percentage of resolved bugs and bug resolution time of 118

SourceForge.net OSS projects were used to measure the learning effects. Projects were characterized by

project type, number and experience of developers, number of bugs, and bug resolution time. Our results

provided evidence of virtual organizational learning in OSS development projects and support for several

factors as determinants of performance. Team size was a significant predictor, with mid-sized project

teams functioning best. Teams of three to seven developers exhibited the highest efficiency over time and

teams of eight to 15 produced the lowest mean time for bug resolution. Increasing the percentage of bugs

assigned to specific developers or boosting developer participation in other OSS projects also improved

performance. Furthermore, project type introduced variability in project team performance.

� 2008 Elsevier B.V. All rights reserved.

* Corresponding author. Tel.: +1 210 4586337; fax: +1 210 4586305.

E-mail address: yoris.au@utsa.edu (Y.A. Au).

Contents lists available at ScienceDirect

Information & Management

journa l homepage: www.e lsev ier .com/ locate / im

0378-7206/$ – see front matter � 2008 Elsevier B.V. All rights reserved.

doi:10.1016/j.im.2008.09.004

mailto:yoris.au@utsa.edu
http://www.sciencedirect.com/science/journal/03787206
http://dx.doi.org/10.1016/j.im.2008.09.004


assigned bugs affected the learning rates. Data for this study were
obtained from the SourceForge.net1 database.

2. Theoretical framework and hypotheses

We developed several hypotheses based on theories that relate
to virtual organizational learning. Our first hypothesis seeks to
show that organizational learning exists in OSS development
projects. The subsequent hypotheses seek to explain the variation
of learning rates observed across projects.

2.1. Organizational learning curves

Group learning curves were first observed in the 1940s during
construction of ships and aircraft [22]. The time required to build a
complex product decreased at a diminishing rate as more products
were produced.

Fiol and Lyles [6] postulated that there are two levels of
organizational learning: higher- and lower-level. The first focuses on
re-defining the overall organizational strategy under ill-defined
context; examples include developing a new organizational culture
and re-establishing organizational priorities [3]. Conversely, that
lower-level learning focused on specific organizational behaviors
and constraints within existing organizational rules, suggesting that
minor managerial adjustments, improved problem-solving skills
and that the development of formal rules were examples of it. This
type of learning is primarily a process of repetition [5].

We consider debugging as a way that organizational experience
is accumulated in OSS development teams, thus establishing the
software development learning curve. This is lower-level learning
where developers repeatedly scan, review, and/or modify program
code. As the team gains experience, it exhibits its learning curve by
decreasing its average time to resolve a bug. Therefore, we
hypothesized that:

H1. As the number of bugs resolved to date increases, the average
bug resolution time decreases.

2.2. Cognitive capital and developer’s OSS experience

Cognitive capital consists of expertise and the knowledge about
how to apply expertise in solving a problem. Over time, people
develop it as they learn the skills, knowledge, specialized dialogue,
and norms of their work and interact with others who share the
same practice [18].

OSS developers can be concurrently involved in more than one
project, allowing them a greater opportunity to work with others,
learn about the norms of OSS development, and accumulate more
experience. Overall, developer’s OSS expertise increases with the
number of projects in which they are involved. This translates into
larger cognitive capital that can be shared with other team
members to improve team performance.

Social capital is defined as the number of the ties or interactions
that an actor (e.g., a developer) has with another in a social event
within a social network or community. For example, Okoli and Oh
[15] found a significant relationship between developer perfor-
mance on Wikipedia and their social ties within the Wikipedia
community. Grewal et al. [7] measured social capital as ‘‘network
embeddedness’’ using parameters derived from the number of
projects in which an OSS developer had been involved. We
therefore used number of OSS projects as a measure for OSS
developer experience.

This lead to the hypothesis:

H2. Teams with more experienced OSS developers resolve bugs
faster.

2.3. Task ownership

Task ownership occurs when a task performer takes personal
interest and responsibility for it. Its degree can affect how the task
is accomplished. It improves team effectiveness and facilitates
individual learning; for example, students exhibit a sense of
individual accountability when their grade is based on individual
efforts in a group project. This also helps to eliminate non-
participants.

The relationship between task ownership and individual/team
performance can be explained by Goal-Setting Theory, which
maintains that task ownership helps task performers clarify their
task goals [12]. In turn, these help performers focus attention on
goal-related activities, thus improving performance. Rasch and
Tosi [16] validated Goal-Setting Theory in software development
teams.

We hypothesized that:

H3. There is an inverse relationship between increasing the per-
centage of bugs assigned to specific developers and average bug
resolution time.

2.4. Project category

At the time of our research, Sourceforge.net classified its projects
into thirteen categories. These included Clustering, Database,
Desktop, Development, Enterprise, Financial, Games, Hardware,
Multimedia, Networking, Security, SysAdmin, and VoIP. Projects in
different categories typically have different complexity and time-
liness, affecting their bug resolution times. We hypothesized:

H4. Different project categories have different average bug reso-
lution times.

2.5. Project team size

Prior work on traditional co-located teams has suggested that
the appropriate team depends on the nature of the task; for
example, Hwang and Guynes [10] reported that large computer-
supported groups generated more decision alternatives but took
longer to reach a decision. If a team is too small, it does not
effectively share the workload but if it is too large, coordination the
overhead is large and social loafing becomes a concern.

The relationship between team size and team performance in
OSS communities might exhibit a different pattern than that in a
traditional setting, because the communication structure is
different; the OSS project team generally consists of two sub-
groups of developers: core developers and code contributors. Core
developers make the critical decisions (e.g., when to release the
next version and whether or not to implement a new feature).
However, to reach consensus on these decisions, intensive
communication among core developers is critical and a small
number of core developers per project is therefore recommended.

Code contributors produce the code. They receive well-defined
subtasks (i.e. bugs), work on them independently, and, when
finished, report back to core developers. As a result, the
communication structure follows a star topology. The core
developers are the central ‘‘hub,’’ and all the contributors connect
to and through this hub.

1 Details were avalaible at http://zerlot.cse.nd.edu/mywiki/ Christley and Madey

[4] provided further descriptions of the SourceForge.net data set.

Y.A. Au et al. / Information & Management 46 (2009) 9–1510

http://zerlot.cse.nd.edu/mywiki/


http://isiarticles.com/article/4000

