The attenuation of dysfunctional emotional processing with stimulant medication: An fMRI study of adolescents with ADHD

Jonathan Posner a,b,⁎, Tiago V. Maia a,b, Damien Fair d, Bradley S. Peterson a,b, Edmund J. Sonuga-Barke e, Bonnie J. Nagel c,d

a Columbia College of Physicians and Surgeons, New York, NY, United States
b New York State Psychiatric Institute, New York, NY, United States
c Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
d Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
e School of Psychology, University of Southampton, Southampton, United Kingdom

A R T I C L E I N F O

Article history:
Received 29 September 2010
Received in revised form 7 February 2011
Accepted 10 February 2011

Keywords:
Stroop
Medial prefrontal cortex
Cognitive control
Emotional lability

A B S T R A C T

Functional neuroimaging studies of attention-deficit/hyperactivity disorder (ADHD) have focused on the neural correlates of cognitive control. However, for many youths with ADHD, emotional lability is an important clinical feature of the disorder. We aimed to identify the neural substrates associated with emotional lability that were distinct from impairments in cognitive control and to assess the effects that stimulants have on those substrates. We used functional magnetic resonance imaging (fMRI) to assess neural activity in adolescents with ADHD while they performed cognitive and emotional versions of the Stroop task that engaged cognitive control and emotional processing, respectively. The participants with ADHD were scanned both on and off stimulant medication in a counterbalanced fashion. Controlling for differences in cognitive control, we found that during the emotional Stroop task, adolescents with ADHD as compared with controls demonstrated atypical activity in the medial prefrontal cortex (mPFC). Stimulants attenuated activity in the mPFC to levels comparable with controls.

© 2011 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Attention-deficit/hyperactivity disorder (ADHD) is among the most common diagnoses in pediatric psychiatry with 3–10% of school age children affected by the disorder (Barkley, 2005). Although ADHD is characterized by inattention, hyperactivity, and impulsivity, one of the most challenging aspects of the disorder is the heightened emotional lability (EL) that is highly prevalent in children with ADHD (Barkley, 1997a). Emotional lability indicates a tendency for intense, or strong, emotional reactions (Maedgen and Carlson, 2000; Conners, 2008; Sobanski et al., 2010) and has been described in youths with ADHD in both the clinical and research literature (Barkley and Fischer, 2010) for several decades, beginning as early as 1798 with Alexander Crichton’s description of hyperactive children demonstrating a “morbid exaggeration of emotional excitability” (Crichton, 1798). In addition, epidemiological studies demonstrate that youths with ADHD have rates of depression and anxiety disorders far beyond those expected by chance alone (Biederman et al., 1991).

Despite the clinical significance of EL in ADHD, its neurobiological substrates are unknown. There are two main, competing hypotheses. The first maintains that EL in ADHD patients stems primarily from impairments in cognitive control and this manifests itself as an impaired capacity to suppress responses elicited by emotional stimuli (Barkley, 1997b). The competing hypothesis maintains that it is emotional processing itself that is dysfunctional with emotional stimuli generating unusually, strong emotional responses in youth with ADHD (Sonuga-Barke et al., 1992). Neuroimaging studies that have examined emotional processing in ADHD subjects have not fully tested these two hypotheses because they did not attempt to disentangle emotional processing from more general deficits in cognitive control (Peterson, 2003). To overcome this, we used functional magnetic resonance imaging (fMRI) to examine whether adolescents with ADHD have altered task-related activation during an emotional processing task and whether these atypical task-related activations could be dissociated from activations associated with cognitive control.

To examine emotional processing, we used an emotional Stroop task (Whalen et al., 2006; Passarotti et al., 2009). In this task, we presented participants with neutral and emotionally salient words (i.e., words such as ‘month’ and ‘death,’ respectively). The emotionally salient words had either positive or negative valence (e.g., ‘happy’ or ‘hate,’ respectively). On each trial, the same word was written several times (Fig. 1A). The task was to indicate on a keypad the number of
times the word was written. Participants are often slower and less accurate in counting the number of times that a word is presented during trials with emotion-denoting words than during the neutral trials (i.e., trials with words without emotional salience) (Williams et al., 1996). This effect of emotion-denoting words on task performance is referred to as an attentional bias, or distraction, and it is thought to reflect participants’ difficulty in diverting attention away from the emotion evoked by the emotional words.

To dissociate emotional processing from cognitive control, we also used a cognitive Stroop task (Bush et al., 2006) that was analogous to the emotional Stroop. As in the emotional Stroop, the subject’s task was to indicate the number of times that a word was written. The difference, however, was that with the cognitive Stroop, the distracter trials consisted of number words that conflicted with the number of presentations (e.g., the word “two” presented three times, in which case the correct answer is “3”). As with the emotional Stroop, the subject’s task was to indicate on a keypad the number of times that the word was written.

Because of activation during the presentation of either positively or negatively valenced words because emotion regulation should be engaged to modulate emotional processing regardless of the valence (i.e., positive or negative) of the words presented. Moreover, the task-related activations should be detected in brain regions associated with the regulation of emotion (e.g., medial PFC and hippocampus) (Davidson et al., 2000; Posner et al., 2009). Lastly, we scanned the ADHD participants while they were on and off stimulant medication. We hypothesized that stimulants would attenuate the atypical emotional processing that we expected to find in the unmedicated ADHD youth.

2. Methods

The Institutional Review Board of the Oregon Health & Science University (OHSU) approved the study procedures. All child participants provided informed assent and a legal guardian provided informed consent.

2.1. Subjects

Participants were 15 adolescents with ADHD and 15 healthy control adolescents. Controls were age- and gender-matched to the ADHD subjects (Table 1). Controls were screened for psychiatric disorders using the Diagnostic Interview Schedule for Children (DISC) — Predictive Scales (Lucas et al., 2001) and were excluded if they had any probable, active Axis I disorder. ADHD subjects, and at least one

| Table 1 Demographic and clinical characteristics of the study sample. CDI, Children’s Depression Inventory; STAI, Spielberger State Anxiety Inventory; FSIG, Full Scale Intelligence Quotient estimated from the Wechsler Abbreviated Scale of Intelligence. Socioeconomic status was assessed with the Hollingshead Index of Social Position. Pubertal status was assessed with the Puberty Development Scale (PDS). *Indicates a statistically significant difference between the ADHD and control participants. The ± indicate standard deviations. |
|---|---|---|---|---|
| ADHD | Healthy controls | Test statistic | P value |
| Age in years | 13.5 ± 1.2 | 13.4 ± 1.2 | r = 0.3 | 0.8 |
| Gender | | | | |
| 13 males; 2 females | 13 males; 2 females | | | |
| Hollingshead Index of Social Position | 32.4 ± 13.9 | 31 ± 11.8 | r = 0.3 | 0.8 |
| FSIG | 111.4 ± 16 | 114.1 ± 10 | r = 0.5 | 0.6 |
| Pubertal status | 2.5 ± 0.8 | 2.7 ± 0.7 | Mann-Whitney U = 96 | 0.5 |
| STAI | 45.2 ± 7.3 | 39.5 ± 7.4 | r = 2.1 | 0.04* |
| CDI | 46.4 ± 7.0 | 39.5 ± 0.9 | r = 3.4 | 0.003* |
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات