On the dynamic use of project performance and schedule risk information during project tracking

Mario Vanhouckea,b,*

a Ghent University, Tweekerkenstraat 2, 9000 Gent, Belgium
b Vlerick Leuven Gent Management School, Reep 1, 9000 Gent, Belgium

Article history:
Received 20 November 2009
Accepted 24 September 2010
Processed by B. Lev
Available online 16 October 2010

Keywords:
Project management

Abstract

Project scheduling, risk analysis and project tracking are key parameters to a project’s success or failure. Research on the relative sensitivity of project activities during the project scheduling phase as well as research on project performance measurement during project progress have been published throughout the academic literature and the popular press. Obviously, the interest in activity sensitivity information and project performance measurement from both the academics and the practitioners lies in the need to focus a project manager’s attention on those activities that influence the performance of the project. When management has knowledge about the current project performance and has a certain feeling of the relative sensitivity of the various project activities on the project objective, a better management focus and a more accurate response during project tracking should positively contribute to the overall performance of the project.

In this article, two alternative project tracking methods to detect project problems are presented and their efficiency on the quality of corrective actions to bring the project back on track is measured and evaluated. More precisely, a bottom-up and a top-down project tracking approach within a corrective action framework is applied on a large and diverse set of fictitious projects that are subject to Monte-Carlo simulations to simulate fictitious project progress under uncertainty. The top-down tracking approach relies on state-of-the-art earned value management performance metrics, while the bottom-up tracking mechanism makes use of the well-known schedule risk analysis method.

A computational experiment shows that a top-down project tracking approach is highly efficient for project networks with a serial activity structure while a bottom-up approach performs better in a parallel structured project network. Moreover, it will also be shown that dynamic thresholds to trigger corrective actions, which gradually increase or decrease the project manager’s attention along the project progress, outperform the static thresholds for both tracking approaches.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Constructing a project baseline schedule (project scheduling), assessing a project’s risk (risk analysis) and measuring the current performance of a project in progress (project tracking or monitoring) are crucial steps throughout the life of a project. The project manager uses the project schedule to help plan, execute and control project activities and to track and monitor the progress of the project. A major component of a project schedule is a work breakdown structure (WBS) which will play a central role throughout the project tracking methods discussed in this paper. However, the basic critical path method (CPM) schedules, or its often more sophisticated extensions, are nothing more but just the starting point for schedule management. Information about the sensitivity of the various parts of the schedule, quantified in schedule risk numbers or of a more qualitative nature, offers an extra opportunity to increase the accuracy of the schedules and might serve as an additional tool to improve the project tracking process. Consequently, project scheduling and tracking tools and techniques should give project managers access to real-time data including activity sensitivity, project completion percentages, actuals and forecasts on time and cost in order to gain a better understanding of the overall project performance and to be able to make faster and more effective corrective decisions. All this requires understandable project performance dashboards that visualize important key project metrics that quickly reveal information on time and cost deviations at the project level (top WBS level) or the activity level (bottom WBS level). During project tracking, the project manager should use all available information.
and should set thresholds on the project or lower WBS levels that act as warning signals during the project’s progress to indicate when corrective actions are necessary to bring the project back on track.

This paper tests two alternative project tracking methods by using two types of dynamic information during project progress to improve corrective action decisions. Information on the sensitivity of individual project activities obtained through schedule risk analysis (SRA) as well as dynamic performance information obtained through earned value management (EVM) will be dynamically used to steer the corrective action decision making process. Throughout this paper, the primary focus is on the time measurement of a project in progress. However, cost information and its performance measurement will be used in case this information is needed to measure time performance and to predict the final project duration.

The outline of this paper can be summarized along the following lines. Section 2 gives a brief overview on project time performance and time sensitivity. Section 3 introduces the two alternative project tracking methods that will be used throughout this paper. In section 4, the test setting and computational results of the simulation study are discussed in detail. Section 5 draws overall conclusions and highlights future research avenues.

2. Literature study

2.1. Earned value management

Earned value management systems have been set up to deal with the complex task of controlling and adjusting the baseline project schedule during execution, taking into account project scope, timed delivery and total project budget. It is a well known and generally accepted management system that integrates cost, schedule and technical performance and allows the calculation of cost and schedule variances and performance indices and forecasts of project cost and schedule duration. The EVM method provides early indications of project performance to highlight the need for eventual corrective actions. For an overview on EVM, see Fleming and Koppelman [1].

Since its introduction, EVM has been the subject to a vast amount of research both in academic as well in more practical settings. However, throughout the years, the research on EVM has been mainly cost driven (see, e.g. the EVM bibliography of Dr. David S. Christenson¹). Recently, the time dimension has received a renewed main focus driven (see, e.g. the EVM bibliography of Dr. David S. Christenson¹). Throughout this paper, the primary focus is on the time measurement of a project in progress. However, cost information and its performance measurement will be used in case this information is needed to measure time performance and to predict the final project duration.

The outline of this paper can be summarized along the following lines. Section 2 gives a brief overview on project time performance and time sensitivity. Section 3 introduces the two alternative project tracking methods that will be used throughout this paper. In section 4, the test setting and computational results of the simulation study are discussed in detail. Section 5 draws overall conclusions and highlights future research avenues.

2.2. Schedule risk analysis

Since the introduction of the well-known PERT in the late 1950’s in project scheduling, the research on measuring a project’s sensitivity has increasingly received attention from both practitioners and academics. Motivated by the common knowledge that the traditional critical path analysis gives an optimistic project duration estimate (see, e.g. [8–10] and many others), measuring the project sensitivity and the ability to forecast the final duration during its execution have become key parameters for project managers. Schedule risk analysis [11] has been discussed widely in the literature as an easy tool to detect the sensitivity of individual activities of a project. The project schedule is often a deterministic view on the future, and will seldom contain some practical value and correct estimates of activity durations and costs. However, using stochastic durations and costs with the traditional Monte-Carlo simulation allows to detect a sensitivity value for each activity, and eventually a completion time distribution for the overall project duration. Despite the many often diverse research outputs, shortcomings are mentioned from different research angles and a lot of confusions on advantages and/or disadvantages have been mentioned while only partial answers on the shortcomings have been reported (for an overview, see, e.g. [12]). Partial answers are given by Vanhoucke [13] who has evaluated four commonly used sensitivity measures on their ability to improve the schedule performance of a project when used in a dynamic corrective action decision making tracking approach.

In the remaining sections of this paper, four sensitivity measures from the literature that will be used during the computational experiment will be abbreviated as follows:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI</td>
<td>Criticality index</td>
</tr>
<tr>
<td>SI</td>
<td>Significance index</td>
</tr>
<tr>
<td>CRI</td>
<td>Cruciality index</td>
</tr>
<tr>
<td>SSSI</td>
<td>Schedule sensitivity index</td>
</tr>
</tbody>
</table>

¹ www.suu.edu/faculty/christensend/ev-bib.html
دریافت فوری

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات