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a b s t r a c t

In a globally competitive environment, sustaining high yield with a minimum number of quality controls
is key for manufacturing plants to remain competitive. In modern semiconductor manufacturing
facilities, with the moves to ever smaller geometries and the variety among products to be run
concurrently, designing efficient control plans is becoming increasingly complex. Since a 100% of
inspection is neither feasible nor interesting because of the cost and reliability of each control,
dynamically identifying the right product to inspect is one of the keys to achieve high yield and reduce
the cycle time. However, when control parameters are over- or under-estimated, a dynamic sampling
static sampling strategy can lead to poor results. In this paper we propose an integer linear programming
approach to optimize the use of inspection capacity through dynamic sampling. The goal is to determine
two key parameters (called warning limit and inhibit limit) that are related to the resulting level of risk
and the available inspection capacity. The model has been implemented on a commercial solver and
tested using actual industrial data. Results show that the overall risk can be strongly reduced without
any additional capacity.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Semiconductor manufacturing is characterized by up to 700
processing steps resulting in a significant cycle time of more than
two months. This significant cycle time, combined with the reduction
in device sizes, leads to a high complexity when designing control
plans for sustaining high yield (Vits et al., 2006). On one hand, a
control plan aims at identifying defective products and yield detrac-
tors throughout production (Bassetto and Siadat, 2009). On the other
hand, a control operation is considered as a non-added value (Bunday
et al., 2007) and, therefore, each time a control operation is performed
on a lot, the cycle time of the lot is increased with consequences on

the final product costs. To stay competitive, companies have to pro-
vide pricing power against competitors. This implies that companies
have to be able to sustain high yield with a minimum number of
control operations.

Several works have been conducted on sampling techniques in
order to minimize the number of controls without increasing the
risk on the production (Boussetta and Cross, 2005) (Purdy, 2007).
Compared to static sampling, dynamic sampling techniques are
more suitable for modern semiconductor plants (Mouli and Scott,
2007). This is particularly true in high-mix semiconductor plants
where more than 200 products are run concurrently. However, the
complexity is such that it is not always easy or feasible to imp-
lement a dynamic sampling strategy because of the factory spec-
ificities, production constraints, or IT infrastructure. Depending on
the production environment, the efficiency of a dynamic sampling
policy will directly be linked to input parameters. If these input
parameters are not optimally set, wrong sampling decisions can
lead to very poor results. This is the case when some parameters
such as process or product criticality are determined mainly based
on the experience of engineers. This is also the case when some
expected levels of risks are directly set by production manag-
ers without considering the effective and available capacity for
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inspection. Consequences are the inability for dynamic sampling
to take relevant decisions regarding the lot or product to inspect.
Some lots may be prioritized because of the product criticality but
never inspected because of the lack of inspection capacity.

In this paper, we propose an integer linear programming (ILP)
approach to optimize the use of inspection tools through dynamic
sampling. The approach consists of determining two key parameters
that are related to the resulting levels of risk and the available
inspection capacity. These two key parameters are called warning
limit (WL) and inhibit limit (IL) and were introduced in (Dauzère-
Pérès et al., 2010) for dynamically sampling lots in front of inspection
steps. WL corresponds to the limit above which the situation starts to
become critical in term of control, and IL is the limit above which the
production should be stopped if a control operation is not performed.
In terms of wafers, IL represents the maximum number of wafers that
can be run on a production tool between two control operations, and
WL is an alarm taking into account the cycle time between a
production tool and the next inspection tool. The study has been
performed for the defectivity area, where control operations are done
on wafers in order to monitor the contamination of production tools.
Hence, all production tools in the different processing stages of
semiconductor manufacturing (etching, implantation, photolithogra-
phy, chemical mechanical polishing (CMP), etc.) are controlled in
defectivity. Results indicate that WL and IL values drive the sampling
policy. If the WL and IL values are underestimated, a significant
number of lots will be sampled since the objective is to stay below IL.
However, because of the lack of inspection capacity, not all sampled
lots will be inspected. Consequences are increased cycle times for the
sampled lots that are stopped at the inspection step for “nothing”.
Similarly, if the WL and IL values are overestimated, the number of
sampled lots will be reduced but the risk will be significant, and the
inspection capacity will be wasted due to inspection of lots without
added value. By using the WL and IL values obtained with our ILP
model, we show that an overall risk reduction can be obtained
without additional inspection capacity.

This paper is structured as follows. Section 2 summarizes a lite-
rature review of sampling techniques in semiconductor manufactur-
ing. The problem is described in Section 3. Section 4 presents the
Integer Linear Programming (ILP) model we propose to compute the
WL and IL values. Numerical experiments performed on actual data
from company are presented in Section 5. We discuss the impact of
the WL and IL values on a dynamic sampling policy, and assess the
efficiency of values obtained with our ILP model. Section 6 concludes
the paper and provides avenues for further research.

2. Literature review

Sample measurement inspecting for a process parameter is a
necessity in semiconductor manufacturing, because of the prohibi-
tive amount of time involved in 100% inspection while maintaining
sensitivity to all types of defects and abnormality (Su et al., 2008).
Moreover, a 100% inspection does not ensure 100% quality since, in
semiconductor manufacturing, the inspection is never totally reli-
able and can easily introduce an error of almost the same order as
the fraction of defectives (Pesotchinsky, 1987; Chien et al., 2007).
Clearly, the development of sampling techniques is not recent in
semiconductor manufacturing. However, much progress has been
observed from static to dynamic through adaptive sampling tech-
niques. A detailed review on sampling strategies and techniques in
semiconductor manufacturing can be found in Nduhura-Munga
et al. (2013). Some of the key references are discussed below.

Static sampling techniques consist of always selecting a fixed
number of lots to inspect at different stages of manufacturing. This
technique, widely used in the 90's because of the ease of imple-
mentation, is no longer suitable for modern semiconductor plants.

For instance, Tomlinson et al. (1997) describe a study performed in
an IBM plant to determine the optimal sampling plan for the poly
etch module. The goal is to minimize both the risk for the product
and the cost of inspection. Optimized sampling techniques for over-
lay measurements are discussed in Chien et al. (2001), and are
validated through simulations using historical data from fabs. A
discussion on the strengths and weaknesses of various sampling
techniques for critical dimension (CD) measurement can be found
in Elliott et al. (1999). Because static sampling means inspecting the
same lots at all control operations, there is a problem of coverage in
term of risk, and the factory dynamics is not taken into account
(Venkateswaran and Son, 2006). Moreover, for the considered lots,
there is a strong impact on cycle time and an increased risk of yield
losses due to a larger number of steps to be performed and the
significant time spent in front of each inspection step (Wang et al.,
2006). The transition from static to adaptive sampling started in the
second part of the 1990s. An example of an industrial deployment
can be found in Williams et al. (1999). Adaptive sampling techni-
ques are an evolution of static sampling techniques. Sampling rules
are adjusted throughout production depending on the production
state (Boussetta and Cross, 2005; Ho and Trindade, 2009). The main
difference between the two techniques is that, in adaptive sam-
pling, the number of lots or wafers to select is adjusted through-
out production depending on the process state, see for example
(Shanthikumar, 2007). An example can be found in (Prabhu et al.,
1994), where a combined adaptive X chart is introduced that uses
real-time information available from the process to make the con-
trol scheme proactive. In Kuo et al. (1997), simulation studies are
performed to test and validate an adaptive sampling approach.
Although adaptive sampling is generally much more effective than
static sampling, its main drawback is the management of resources.
By modifying the number of lots to inspect throughout production,
the workload at the inspection step is no longer the same (Dauzère-
Pérès et al., 2010).

Dynamic or smart sampling techniques are the more recent
techniques being developed for modern semiconductor plants. They
consist of selecting in real time the best lot or wafer to inspect dep-
ending on the production state, the inspection capacity, and the factory
dynamics. Several indicators are analyzed in real time and no static
rule is defined at the start of the production. All lots can be inspected
and the decision of inspecting or not a lot is directly taken in front of
the inspection step based on the gain brought by the lot. Dynamic
sampling techniques are more suitable for modern and high-mix
semiconductor plants (Purdy, 2007), but the problem is that it is not
always easy to assess their efficiency. Analyzing in real time several
indicators may lead to an increased complexity depending on the
production environment. First, the significant amount of data to man-
age can lead to infeasible solutions depending on the factory environ-
ment. Second, the types of data or parameters to handle can impact
the efficiency of a sampling technique. This is the case when some
input parameters are based on the experience of engineers and not on
actual data. Third, these techniques are still recent and authors often
do not specify how lots can be dynamically selected and how a given
technique can be implemented in practice. (Purdy, 2007; Holfeld et al.,
2007) are the first authors who worked on industrial deployments.
However, they do not provide details on the efficiency and complexity
of these deployments. Lin et al. (2010) point out three main benefits
related to developing a dynamic and intelligent sampling system in
semiconductor manufacturing: sampling stability, satisfactory coverage
of in-line products, and comprehensive inclusion of process tools. Also,
and although no industrial assessment is reported, Sun and Johnson
(2008) propose a scoring algorithm based on weighted objectives to
determine the optimal wafer sampling for maximum coverage.

Dauzère-Pérès et al. (2010) introduce a dynamic sampling algo-
rithm that has been tested and validated with actual data from
different semiconductor manufacturing facilities (Yugma et al., 2011).
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