Simulation study on boil-off gas minimization and recovery strategies at LNG exporting terminals

Yogesh M. Kurle a, Sujing Wang b,⇑, Qiang Xu a,⇑

a Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA
b Department of Computer Science, Lamar University, Beaumont, TX 77710, USA

ABSTRACT

Liquefied natural gas (LNG) is becoming one of the prominent clean energy sources with its abundance, high calorific value, and low emission and price. Vapors generated from LNG due to heat leak are called boil-off gas (BOG). As world-wide LNG productions are in an increasingly growth, BOG generation and handling problems become more critical subject to more intense global competitions and stricter environmental regulations. In this study, typical C3-MR process, storage facilities, and loading facilities are modeled and simulated to study BOG generation at LNG exporting terminals, including LNG processing, storage, and berth loading areas. Factors causing BOG are presented, and quantities of BOG generated due to each factor at each location are calculated under different LNG temperatures. Various strategies to minimize, recover, and reuse BOG are also studied for their feasibility and energy requirements. The study would help proper handling of BOG problems in terms of minimizing flaring at LNG exporting terminals, and thus reducing waste, saving energy, and protecting surrounding environments.

1. Introduction

With a continuous increase in clean energy demands, the world-wide production capacity of liquefied natural gas (LNG) is expanding very fast, and LNG is actually becoming the world’s fastest growing energy sector. United States Energy Information Administration (EIA) states that the world natural gas trade, by both pipeline and shipment in the form of LNG, will be poised to increase tremendously in the future [1]. 285 million tons per year (MTPA) of liquefaction capacity has been proposed in North America alone [2]. New LNG terminals, which are currently under construction, will increase the LNG production by 125 MTPA [3]. In 2014 only, over 297 MTPA world-wide LNG operating capacity was recorded [4].

Over long distances, it is more economical to transport natural gas in the form of LNG, because LNG has over 600 times lower volume compared with the gas phase of the same mass. However, its
bubbles point is below −161 °C, which requires a huge amount of energy for liquefaction operations. Note that the huge difference between LNG processing temperature and the ambient temperature can easily cause heat leak in spite of careful insulations. The heat leak makes some LNG vaporize, where the vapors generated are called boil-off gas (BOG). To avoid the overpressure in LNG containers, it is necessary to relieve BOG periodically. BOG mainly contains the lightest compounds from LNG, i.e., methane and nitrogen. Not having proper BOG recovery facility will lead to flaring of BOG, which will result in wastage of material and energy, and environmental pollutants. Limiting climate change [5] would require substantial and sustained reductions in greenhouse gas (GHG) emissions [6]. A range of policies have been made for mitigation of GHG emissions in different sectors, and these policies are being implemented effectively by many countries [7]. Various tools for reduction of GHG emissions include: (a) increase of shares of renewables, (b) increase of energy efficiency, (c) flare minimization through proper planning and scheduling operations, avoiding process upsets, using better process control, utilizing end flash gases, (d) minimize venting and fugitive emissions, (e) use of cleaner fuels, and (f) Carbon capture and sequestration [8]. Methane has about 26 times higher radiative efficiency than CO2 emissions from flaring of unused gas (natural gas) during oil production, and (f) Carbon capture and sequestration [8].

Refrigerant process by Shell; and (4) Mixed Fluid Cascade process developed by ConocoPhillips; (3) Duel Mixed Refrigerant process by Shell; and (4) Mixed Fluid Cascade process by Linde Engineering. The C3-MR process is used in most LNG plants [19,20]. Therefore, the C3-MR process is used in this study. Steady-state simulation tool Aspen Plus v8.2 software is used to simulate NG liquefaction, LNG loading, and BOG recovery processes.

2.1. Base case simulation

In the base case of C3-MR process, propane is used to precool natural gas while mixed refrigerant is used for chilling process for liquefaction. The simulated C3-MR process is partly based on process flow and process conditions described by Ravavarapu et al. [21]. Soave–Redlich–Kwong (SRK) cubic equation of state is used as the property method based on the suggestion of Aspen Plus for gas processing and hydrocarbon systems. Fig. 1 shows the process flow diagram for this liquefaction process. An LNG plant with 4.3 MTPA capacity is simulated using Aspen Plus v8.2. The feed flow rate is calculated to be 600,000 kg/h. The feed composition is given in Table 1. The sweet natural gas enters the plant at 50 bar and 25 °C. The ambient temperature is set as 15 °C. The natural gas is precooled to −34 °C using propane refrigeration cycle. The mixed refrigerant (MR) cycle is also precooled using propane refrigeration cycle. MR’s model composition includes 40% methane, 35% ethane, 15% propane, and 10% nitrogen. After the NG is dried and sent to Scrubber for heavy hydrocarbon removal, it is directed to nitrogen removal unit (NRU) to separate excess nitrogen. There are different methods to remove nitrogen from NG [22–24]. For NRU units in the simulation, it is assumed that 75% of nitrogen from NRU-feed is removed to fuel gas stream coming out of the NRU, and 1.3% of methane from the feed is lost in the fuel gas stream. After NRU, sweet, dry, and pure NG meeting specifications is given in Table 1. The LNG flash, storage, and loading processes are modeled and simulated to study BOG generation at LNG exporting terminals, including LNG processing, storage, and berth loading areas. Factors causing BOG are presented, and quantities of BOG generated due to each factor at each location are calculated under different LNG temperatures. Various strategies to minimize, recover, and reuse BOG are also studied for their feasibility and energy requirements. The study would help proper handling of BOG problems in terms of minimizing flaring at LNG exporting terminals, and thus reducing waste, saving energy, and protecting surrounding environments.

2. BOG minimization and recovery strategies and process simulation

There are several main LNG processes used in industries: (1) C3-MR process developed by Air Products & Chemicals Inc.; (2) Cascade process developed by ConocoPhillips; (3) Duel Mixed Refrigerant process by Shell; and (4) Mixed Fluid Cascade process by Linde Engineering. The C3-MR process is used in most LNG processing plants [19,20]. Therefore, the C3-MR process is used in this study. Steady-state simulation tool Aspen Plus v8.2 software is used to simulate NG liquefaction, LNG loading, and BOG recovery processes.
دریافت فوری
متن کامل مقاله
امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات