Reactive control of overall power consumption in flexible manufacturing systems scheduling: A Potential Fields model

C. Pach, T. Berger *, Y. Sallez, D. Trentesaux

LAMIH, UMR CNRS 8201, University of Valenciennes and Hainaut-Cambrésis, F-59313 Valenciennes, France

A R T I C L E   I N F O

Article history:
Received 1 December 2014
Received in revised form 11 June 2015
Accepted 4 August 2015

Keywords:
Overall consumption
Reactive control, scheduling, Potential Fields
Flexible manufacturing systems

A B S T R A C T

In recent years, designing “energy-aware manufacturing scheduling and control systems” has become more and more complex due to the increasing volatility and unpredictability of energy availability, supply and cost, and thus requires the integration of highly reactive behavior in control laws. The aim of this paper is to propose a Potential Fields-based flexible manufacturing control system that can dynamically allocate and route products to production resources to minimize the total production time. This control system simultaneously optimizes resource energy consumption by limiting energy wastage through the real-time control of resource states, and by dynamically controlling the overall power consumption taking the limited availability of energy into consideration. The Potential Fields-based control model was proposed in two stages. First, a mechanism was proposed to switch resources on/off reactively depending on the situation of the flexible manufacturing system (FMS) to reduce energy wastage. Second, while minimizing wastage, overall power consumption control was introduced in order to remain under a dynamically determined energy threshold. The effectiveness of the control model was studied in simulation with several scenarios for reducing energy wastage and controlling overall consumption. Experiments were then performed in a real FMS to prove the feasibility of the model. The superiority of the proposition is its high reactivity to manage production in real-time despite unexpected restrictions in the amount of energy available. After providing the limitations of the work, the conclusions and prospects are presented.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

It is estimated that industrial power consumption worldwide will increase by 40 percent between 2006 and 2030 (Energy Information Administration, 2009), while power supplies will decrease due to the decline in fossil fuel-based energy sources (Chefurka, 2008). The manufacturing sector, which accounts for the biggest share of power consumption (33%) and greenhouse gases (38%), will have to cope with growing energy costs, the uncertainty related to renewable energy, new legislation regarding energy efficiency, and customers looking for sustainable production (Jánicek, 2008; Taylor, d’Ortigue, Francoeur, & Trudeau, 2010). That is why one of the IMS2020 project roadmaps (IMS2020, 2013) focuses on energy as one of the main concerns in manufacturing, the key area of Energy Efficient Manufacturing being to reduce the carbon footprint of manufacturing in the future.

There are many ways to design Energy Efficient Manufacturing systems since energy, typically electrical energy, can be considered in different stages of a product’s life cycle, namely procurement, production, distribution and afterlife (Sarkis & Rasheed, 1995). This paper focuses on the production stage in manufacturing systems that play a vital role in the global economy, but have a significant environmental burden (Duflo et al., 2012). As outlined in (Pach, Berger, Sallez, Adam & Trentesaux, 2013a), during the production stage, different solutions can be studied to reach the desired sustainability: resources or processes can be substituted with less consuming ones; resource optimization can be enhanced; processes can be fine-tuned and external energy-saving devices can be added to the system.

The first possibility is to substitute processes or resources with less consuming ones. Regarding processes, (He, Liu, Zhang, Gao & Liu, 2012) show that using alternative process schemes for two jobs can greatly affect energy-optimizing scheduling. (Zein, 2013) presents current work on machine tools to make them more efficient. The problem with changing a process or resource is that first, it can imply other modifications in the manufacturing system and second, it requires heavy initial investment for the manufacturer (Bi & Wang, 2012). The second way to increase the sustainability of a manufacturing system is to adjust processes with regard to power consumption. Optimizing a process can greatly improve power consumption (Dietmair & Verl, 2009; Ochoa George, Gutiérrez, Cogollo
Section 2 thus presents some studies dealing with power consumption control in manufacturing systems and positions our contribution. Section 3 formalizes the problem and Section 4 presents a reactive Potential Fields model to control the FMS taking energy into consideration. The FMS case study is presented in Section 5. Section 6 reports the simulations performed for this case study. Section 7 provides clues for the implementation of concepts in this case and an experiment in real conditions. Section 8 presents the limitations of the approach proposed. Our conclusions and prospects are presented in Section 9.

2. State of the art in energy-aware manufacturing scheduling and control

Contributions found in the literature focusing on optimizing the use of existing manufacturing resources by taking power consumption into consideration with regard to a level of available energy are two-fold. The first and most common are mathematical programming oriented approaches. There are numerous studies using Integer Linear Programming (Zhang, Li, Ao, Zhang, & Wen, 2012), Mixed Integer Linear Programming (Bruzzone, Anghinolfi, Paolucci, & Tonelli, 2012; Fang, Uhan, Zhao & Sutherland, 2011a), Fractional Mixed Integer Programming (Wang, Ding, Qi & Dong, 2011) or Mixed Integer Non-Linear Programming (Vergnano et al., 2010). The first problem tackled in the literature is peak power consumption. Peak power consumption can cause huge peaks in the energy grid and generate additional costs (Pechmann & Schöler, 2011). (Babu & Ashok, 2008) tackled the problem using mixed integer-non-linear programming that reschedules the load and minimizes the energy peak. The problem is also tackled in (Bruzzone et al., 2012) with a two-step approach where a schedule is created by an advanced planning and scheduling system without considering energy savings, and then refined using mixed integer linear programming to control peak power consumption. The second problem tackled is the reduction of the overall power consumption of the manufacturing system. In (Zhang et al., 2012), this is controlled with a linear programming-based scheduling function. In (Vergnano et al., 2010), the problem is solved using non-linear programming. (Fang, Uhan, Zhao & Sutherland, 2011b)
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات